Monte Carlo study of the droplet formation-dissolution transition on different two-dimensional lattices

A. Nußbaumer, E. Bittner, W. Janke
2008 Physical Review E  
In 2002 Biskup et al. [Europhys. Lett. 60, 21 (2002)] sketched a rigorous proof for the behavior of the 2D Ising lattice gas, at a finite volume and a fixed excess \delta M of particles (spins) above the ambient gas density (spontaneous magnetisation). By identifying a dimensionless parameter \Delta (\delta M) and a universal constant \Delta_c, they showed in the limit of large system sizes that for \Delta < \Delta_c the excess is absorbed in the background ("evaporated" system), while for
more » ... em), while for \Delta > \Delta_c a droplet of the dense phase occurs ("condensed" system). To check the applicability of the analytical results to much smaller, practically accessible system sizes, we performed several Monte Carlo simulations for the 2D Ising model with nearest-neighbour couplings on a square lattice at fixed magnetisation M. Thereby, we measured the largest minority droplet, corresponding to the condensed phase, at various system sizes (L=40, >..., 640). With analytic values for for the spontaneous magnetisation m_0, the susceptibility \chi and the Wulff interfacial free energy density \tau_W for the infinite system, we were able to determine \lambda numerically in very good agreement with the theoretical prediction. Furthermore, we did simulations for the spin-1/2 Ising model on a triangular lattice and with next-nearest-neighbour couplings on a square lattice. Again, finding a very good agreement with the analytic formula, we demonstrate the universal aspects of the theory with respect to the underlying lattice. For the case of the next-nearest-neighbour model, where \tau_W is unknown analytically, we present different methods to obtain it numerically by fitting to the distribution of the magnetisation density P(m).
doi:10.1103/physreve.77.041109 pmid:18517580 fatcat:jgfj2kr6nng2rkgqsucs2mmfcq