A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2018; you can also visit <a rel="external noopener" href="https://ir.cwi.nl/pub/1305/1305D.pdf">the original URL</a>. The file type is <code>application/pdf</code>.
Computing invariant measures for expanding circle maps
<span title="1998-01-01">1998</span>
<i title="IOP Publishing">
<a target="_blank" rel="noopener" href="https://fatcat.wiki/container/q4aeha62d5f2hmm5rva4woaifq" style="color: black;">Nonlinearity</a>
</i>
Let f be a sufficiently expanding C 2 circle map. We prove that a certain Markov approximation scheme based on a partition of S 1 into 2 N equal intervals produces a probability measure whose total variation norm distance from the exact absolutely continuous invariant measure is bounded by CN2-N; C is a constant depending only on the map f.
<span class="external-identifiers">
<a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1088/0951-7715/11/1/004">doi:10.1088/0951-7715/11/1/004</a>
<a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/aiyfi555s5ey5gwyzba5rzn4xq">fatcat:aiyfi555s5ey5gwyzba5rzn4xq</a>
</span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20180720205059/https://ir.cwi.nl/pub/1305/1305D.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext">
<button class="ui simple right pointing dropdown compact black labeled icon button serp-button">
<i class="icon ia-icon"></i>
Web Archive
[PDF]
<div class="menu fulltext-thumbnail">
<img src="https://blobs.fatcat.wiki/thumbnail/pdf/cb/13/cb13c98bef5920659b047279358588c97374ff20.180px.jpg" alt="fulltext thumbnail" loading="lazy">
</div>
</button>
</a>
<a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1088/0951-7715/11/1/004">
<button class="ui left aligned compact blue labeled icon button serp-button">
<i class="unlock alternate icon" style="background-color: #fb971f;"></i>
iop.org
</button>
</a>