A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2022; you can also visit the original URL.
The file type is application/pdf
.
The first comparative analysis of meteor echo and sporadic scattering identified by a self-learned neural network in EKB and MAGW ISTP SB RAS radar data
Первый сравнительный анализ метеорного эхо и спорадического рассеяния, идентифицированных самообучившейся нейронной сетью по данным радаров EKB и MAGW ИСЗФ СО РАН
2022
Solnechno-Zemnaya Fizika
Первый сравнительный анализ метеорного эхо и спорадического рассеяния, идентифицированных самообучившейся нейронной сетью по данным радаров EKB и MAGW ИСЗФ СО РАН
The paper describes the current version (v.1.1) of the algorithm for automatic classification of signals received by ISTP SB RAS decameter coherent scatter radars. The algorithm is a self-learning neural network that determines the type of scattered signals from the results of physical modeling of radio wave propagation, using radar data and international reference models of the ionosphere and geomagnetic field. According to MAGW and EKB ISTP SB RAS radar data for 2021, the algorithm
doi:10.12737/szf-84202206
fatcat:po5wyqbkvvc6vfzsjv647odxhi