Vaccines Developed for Cancer Immunotherapy [chapter]

Aizong Shen, Rui Qian, Ting Liu, Qingchuan Liu, Bin Liu, Zhangbao Wu
2018 Immunization - Vaccine Adjuvant Delivery System and Strategies  
Vaccines have been successfully used for prophylaxis of infectious diseases for a long time and in the last decades have inspired researchers to make products with similar immunological mechanisms for cancer immunotherapy, which has been developed rapidly into clinical applications and has shown remarkable therapeutic efficacy, as exemplified by chimeric Ag receptor T cell (CAR-T cell) and immune checkpoint inhibitor-based therapies which can efficiently strengthen the body's immune system to
more » ... immune system to fight against cancer, but they are also expensive. Therefore, encouraged by recent success of cancer immunotherapy, scientists are actively developing the low-cost tumor Ag-based vaccines, which, however, usually exhibit weak immunostimulating effects and, therefore, are often formulated with nanoparticulate carriers to form a vaccine adjuvant-delivery system (VADS), which can not only enhance the efficacy but also mitigate the off-target toxicity associated with conventional anticancer vaccines. These nanoparticulate carrierbased VADSs have demonstrated multiple functions, such as targetedly triggering Ag-presenting cells, reeducating tumor-associated macrophages (TAM) to function as tumor suppressor agent, and eliciting robust cytotoxic T lymphocytes (CTLs) to kill tumor cells. This chapter introduces multifunctional VADS that have been engineered with nanoparticulate carriers, including polymeric-, lipid-, metallic-, and cell-based nanoparticles, and used as an alternative to the existent tools for cancer immunotherapy.
doi:10.5772/intechopen.80889 fatcat:7sacofr6izhqfavw5anftukjny