CLIPstyler: Image Style Transfer with a Single Text Condition [article]

Gihyun Kwon, Jong Chul Ye
2021
Existing neural style transfer methods require reference style images to transfer texture information of style images to content images. However, in many practical situations, users may not have reference style images but still be interested in transferring styles by just imagining them. In order to deal with such applications, we propose a new framework that enables a style transfer 'without' a style image, but only with a text description of the desired style. Using the pre-trained text-image
more » ... embedding model of CLIP, we demonstrate the modulation of the style of content images only with a single text condition. Specifically, we propose a patch-wise text-image matching loss with multiview augmentations for realistic texture transfer. Extensive experimental results confirmed the successful image style transfer with realistic textures that reflect semantic query texts.
doi:10.48550/arxiv.2112.00374 fatcat:hlq4dl25trg2penxgs3v25lmra