Contextual associations represented both in neural networks and human behavior [article]

Elissa M Aminoff, Shira Baror, Eric W Roginek, Daniel D Leeds
2022 bioRxiv   pre-print
Contextual associations facilitate object recognition in human vision. However, the role of context in artificial vision remains elusive as does the characteristics that humans use to define context. We investigated whether contextually related objects (bicycle-helmet) are represented more similarly in convolutional neural networks (CNNs) used for image understanding than unrelated objects (bicycle-fork). Stimuli were of objects against a white background and consisted of a diverse set of
more » ... ts (N=73). CNN representations of contextually related objects were more similar to one another than to unrelated objects across all CNN layers. Critically, the similarity found in CNNs correlated with human behavior across three experiments assessing contextual relatedness, emerging significant only in the later layers. The results demonstrate that context is inherently represented in CNNs as a result of object recognition training, and that the representation in the later layers of the network tap into the contextual regularities that predict human behavior.
doi:10.1101/2022.01.13.476195 fatcat:b33nzbv6bzbgrhbaqrj3phorpe