A New Gauge/Gravity Dictionary via the Division Algebras

Silvia Nagy, Michael Duff, Engineering And Physical Sciences Research Council
2015
The main goal of this thesis is to explore the idea of gravity as the square of a gauge theory at the level of Lagrangian symmetries. By regarding gravity as the convolution of left and right Yang-Mills theories together with a spectator scalar field in the bi-adjoint representation, we derive in linearised approximation the gravitational symmetries of general covariance, p-form gauge invariance, local Lorentz invariance and local supersymmetry from the at space Yang-Mills symmetries of local
more » ... uge invariance and global super-Poincare. As an example, we will we focus on the new-minimal (12 + 12) off-shell version of simple four-dimensional supergravity obtained by tensoring the off-shell Yang-Mills multiplets (4 + 4;N_L = 1) and (3 + 0;N_R = 0). By tensoring all possible pairs of on-shell super Yang-Mills multiplets in dimensions 3 ≤ D ≤ 10 to get on-shell supergravity multiplets, possibly with additional matter multiplets. By associating a (direct sum of) division algebra(s) D with each dimension 3 ≤ D ≤ 10 we obtain a formula for the supergravity U-duality G and its maximal compact subgroup H in terms of the internal global symmetry algebras of each super Yang-Mills theory. We then extend our analysis to include supergravities coupled to an arbitrary number of matter multiplets by allowing for non-supersymmetric multiplets in the tensor product. We also introduce the idea of writing the SYM multiplets themselves as a double copy. We construct the states and symmetries of N = 4 super-Yang-Mills by tensoring two N = 1 chiral multiplets and introducing two extra SUSY generators. This allows us to write the maximal N = 8 supergravity as four copies of the chiral multiplet. We extend this to higher dimensions and discuss possible applications.
doi:10.25560/25273 fatcat:yibyc55dkfgvtggve3yuzitzne