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The ground-state phases of a one-dimensiona#B&pin-orbital Hamiltonian in a generalized external field
are studied on the basis of the Bethe-ansatz solution. Introducing threé gdaders for spin, orbital, and
their products in the Si4) Zeeman term, we systematically discuss various symmetry breakings. The magne-
tization versus external field is evaluated by solving the Bethe-ansatz equations numerically. The phase dia-
grams corresponding to distinct residual symmetries are given by means of both numerical and analytical

methods.
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[. INTRODUCTION Bethe-ansatz solution. Our paper is organized as follows. In
Sec. Il, we introduce the Bethe-ansatz solution and the

There has been much interest in the study of spin modelgéeeman-like term which is going to be added to the original
with orbital degenerady*®due to experimental progress re- SU(4) Hamiltonian. In Sec. Il we give some useful remarks
lated to many transition-metal and rare-earth compound@bout the quantum number configurations of the ground state

such as LaMn@and CeR, and the perovskite lattice, as in in the presence of an external field that is characterized by
KCuF;.58 Those systems involve an orbital degree of free-thrée parameters. We also demonstrate the thermodynamic

dom in addition to that of spin. Almost three decades agoliMit of the Bethe-ansatz equation and briefly present the
Kugel and Khomskii* pointed out the possibility of orbital dress-energy description of the ground state in the presence

excitations in this system. As a model system, it exhibitsOf an external field. In Sec. IV, we study the magnetization

some fascinating physical features that do not occur in thé);?grenrgteesr sOfm;e!t-r'arEIrg(;rlllian ;2 stgg \r/eg\;?;uv(\j”thbo?ﬁet;]e
absence of the orbital degree of freedom. The isotropic cas¥ y y 9: s y

of 2 spin tem with orbital deaeneracy was shown to ha magnetization and the phase diagram in regimes with two-
Spin Sys Wi ! 9 y was snown ! VBarameter symmetry breaking. Various phases and quantum
an enlarged S4) symmetryt and the one-dimensional

del is K b | Va2 ials related phase transitions are investigated by both numerical calcula-
model is known to be exactly solvabie” Materials related i, ang analytical formulation. Concerning the various

to spin-orbital systems in one dimension include quaSi'onephases, we give a detailed explanation in terms of group
dimensional tetrahis-dimethylamino-ethyleng ¢2 artificial theory. Section VI includes a summary.
quantum dot array¥' and degenerate chains in ;& Sh,0

and NaV,0s compounds>*® |t is therefore worthwhile to Il. THE MODEL AND ITS SOLUTION
systematically study the features of the model. A theoretical

study’ found a strong interplay of the orbital and spin de- We start from the following Hamiltonian:
grees of freedom in the excitation spectra. It has been noticed

N
that the presence of the orbital degree of freedom may result He E 1
=1

1
ZSJSJ+1+§

1
(2TJ.TJ+1+§ @

in various interesting magnetic properties. Applying a con-
ventional magnetic field, the spin-orbital chain with @Y ) ) )
symmetry is shown to reduce to a model with orbital(SU yvhereSJ- a_ndTJ- denote the spin and orbital operators at site
symmetry in the ground state. Recently, we showed that thd fespectively. Both of them are generators of the(3U
magnetization process becomes more complicated if the co§f0Up characterizing the spin and orbital degrees of freedom
tribution of the orbital sector is taken into accodhtwe  Of outer shell electrons in some transition-metal oxides in the
explained that the competition between spin and orbital delnsulating regime. The coupling constant is set to unity for
grees of freedom leads to an orbital antipolarization phasesimplicity. It has been pointed out that the above Hamil-
However, the external field we introduced in Ref. 10 is notionian possesses an enlarged(@lsymmetry rather than

the most general one for $4 systems. There is both an- SU(2)XSU(2) symmetry. .
isotropy in spin-orbital superexchange and John-Teller dis- The four states that carry the fundamental representation
tortion that break the degeneracy of tagorbital? this al-  ©Of the SU4) group are denoted by

lows us to consider the most generalized external fields in

the following. [1)=112,12, [1)=]1/2,-1/2),
In this paper, we study an $4) spin-orbital chain in the o
presence of a generalized external field on the basis of its [L)=|-121/2, ||)=|-12,~-1/2). (2)
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TABLE I. The eigenvalues of?, T?, U” and thezcomponent of  where 6,(x) = —2 tan }(x/a). \, u, and v are rapidities re-

01, 03, Oj for the four basis statd€q. (2)]. lated to the three generators of the Cartan subalgebra of the
- - - su4) Lie algebra. The quantum numbeisg ,J, K.} specify
State s T u* 01 03 03 a state in which there ali—M sites in the staté]), M
1) 1/2 1/2 1/2 12 0 0 —M"in 1), M'=M"in||), andM" in || ). Hence thez
m 1/2 —1/2  —1/2 —1/2 1/2 0 components of total spin, orbital, arld* are obtained as
|l> -1/2 1/2 —1/2 0 —1/2 1/2 Stzot:le:Ml, thot:N/Z—M'f'M’—M", and Utzot:N/Z
-2 -2 w2 o0 o 12 MM

In the present S model, a three-parameter external
field (h1,h,,h3) can be introduced to express the most gen-

These bases are labeled by the eigenvalu&® ahdT?, i.e,  ©ral Zeeman-like energy:

|S%,T%). As the s@d) Lie algebra is of rank 3, there exists a 3
third generator 3*T# which is simply the anisotropic hybrid- Hyee= E hyOZ,. 6)
ized spin-orbital interaction and possesses a simultaneous ei- m

ey Z X
genvaIL_Je together with a”S'T - For convenience, we de- To make the physics clearer, we reselect the parameters to
note this new generator by* hereafter. In the terminology rite the effective magnetizatioM? as
of group theory, however, the quadruplet can also be Iabele\g
by the weight vectors defined by eigenvaluesQjf, O3, M*=gSE+ 0 Trt 9 UL, (7)
andOj that constitute the Cartan subalgebra of th@sLie _ , ,
algebra. Here we adopt the Chevalley basis because t here%sogt’ andgu.artla geléneralyze;j Lanctﬁfactors forS d :
physical quantities can be conveniently expressed in this ba- ° an , respectively. qga}tlon } can be expressed in
sis. terms of the number of rapidities,

The eigenvalues o, T%, U? as well as that 007, O3, N
03 aée given in Table I. The relation between these two bases ~ M*=% (gs+ i+ gu) ~M(gi+9u) =M (ds—g0)
read

—M"(gi—gu)- 8
S=0142024 0%, (9= 0u) ®
Because the Zeeman-like term commutes with th€4sU
T?=0%+0%, Hamiltonian(1), the energy spectrum in the presence of an
external field is simply related to the energy spectrum in the
Uz=0%-0%. (3) absence of the external field

! "y ! " __ 4
The present moddll) has been solved by Bethe-ansatz E(h,M.M",M")=Eo(M,M",M") =M, ©)

method>*? Its energy spectrum is given by whereEy(M,M’,M") is determined by Eqg5). Obviously,
" the application of an external field with a different magnitude
1 just brings about various level crossings.
Eo(M,M",M")= _azl 14+ N2’ (4) In terms ofO;, O,, andO5, the magnetizatiori7) be-
a comes
where thel’s are solutions of the following coupled tran-
scendental equations: M?=(gs+9i+9u) 01+ 29505+ (gs+ 9 —9u) O3, 10
M

. _ which breaks S(t) symmetry down to various lower sym-
2mla= N0—1/2()\a)+a§l 01(Aa=Nar) metries depending on the distinct regions in parameter space.

%ﬁ I1l. THE GROUND-STATE CONFIGURATION

+ 0_12Na— ip),

b=1 2 Based on the Bethe-ansatz solution of the model, we first
give the quantum number description of the ground state,

M M’ which is useful for numerical calculation. We also give the
27d,= E 0_ 1 up—Ng) + E 01(pp— Mpr) dress-energy description for the ground state and propose the
a=1 b'=1 conditions that determine quantum phase transitions, which
M is useful for analytic study.
S 0 - vo), ltis know_nl’2 that the ground stzite of the Hamiltoniéh
c=1 is an SU4) singlet for the case dil=4n. The configuration
of the quantum number for the ground stétg,J, K.} (a
M’ Vi =1,2,...3; b=1,2,....,2h; c=1,2,...n) is consecutive inte-
2Ke= > O_ 1 ve—pp)+ D 01(ve—ve), (5)  gers(or half integers arranged symmetrically around zero.
b=1 c'=1 In the presence of a magnetic field, however, the Zeeman

144405-2



PHASE DIAGRAM AND SYMMETRY BREAKING OF AN . ..

term brings about level crossings, and the state with
=3n, M’'=2n, M"=n is no longer the ground state. There-
fore the numbers1, M’, M” for the lowest-energy state are

related to the magnitude of the applied external field.

In order to solve the Bethe-ansatz equation numerically,
we need to determine the possible configurations of quantum
numbers for given values dfl, M’, andM”. The property

of the Young tableau requires that Makj=3N/4,
Max(M")=N/2, Max(M")=N/4, and N-M=M-M’'

=M'—-M"=M" for a givenN. Then one is able to analyze
the change of energy level for each state, which determines
the true ground state for a given external field. One can also

calculate the magnetization by E@®).

In the thermodynamic limit, the enerd9) is expressed in

terms of the densities of the rapidities,
h Ao
EIN== (@t g0+ | o0)[-27Kys0)

0

+(ge+gu)h1dN +(gs—goh f " o(w)du
+(g-gon | . 1y

14
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Ao
8(>\)=—27TK1/2(?\)+(9t+9u)h—J . Kiy(A=\")

—Mo

><8(>\')d>\'+fﬂo KA = p){(p)du,

— 1o

A

g(#):(gs_gt)h+f

0
. Kyapw—=N)e(h)dn
0

14

0
Ky u—v)

Yo

Ro

—f Kl(M_M,)g(M’)dM""f
o

X &(v)dv,

"

? Ku(v—m){(w)dp

Mo

§(V)=(gt—9u)h+f

—J'VO Ki(v—v")&(v")dv', (14

-,
whereg, {, and ¢ are the dress energies in the 4, and v
sectors, respectively. It is worthwhile to point out that the
dress energies are also the thermal potentials at zero tem-
perature, i.e., exp(T)=p"p, expl/T)=d"lo, and expé/T)

— h o
These densities satisfy the following coupled integral equa=¢ /@ The thermal Bethe-ansatz equation in the zero-

tions:

Ao
U()\)=K1/z()\)—f Ki(A=N")o(N")dN’

_)\0

+ f " Kaph = ) o) dp,

— Mo

Ao Ko
w(M)=f7 Kl/z(,u—h)tf(?\)dh—f Ky(u—n")

Ao —Ho

Xo(p")du'+ fjo Kiw=v)7(v)dv,

Yo
T(V):J“° Kl,zw—mw(mdu—j”’ Ky(v—v")
~ Mo —vo
X r(v")dv’, (12

whereK,(x)=7"1n/(n?+x?) and\q, ug, and v, are de-
termined by

[ o=
IS

J’”’ =2
a) :_’
- N
v MI/
Ji(’ (= (13)

Yo

It is more convenient to introduce the dress enéfgbhe
iteration of Eq.(12) gives rise to

temperature limit turns into Eq14). In terms of the dress
energy, the energyll) is simplified to

N

h
E/N=—§<gs+gt+gu>+f KudMe(MdA. (15

0
Apparently, the ground state is a quasi-Dirac sea where the
states of negative dress energfh) <0, {(u)<O0, &(v)=0
are fully occupied. The Fermi points of the three rapidities
are determined by

g(N)=0, Z(no)=0, &(vo)=0. (16)

The system will be magnetized if the applied field enhances
the dress energy, because it makes the corresponding Fermi
points decline. A quantum phase transition occurs when any
of the Fermi points shrinks to zero. As a result, the critical
values of the external field are solved using

#(0)lh=n=0, £(0)|h=n;=0, &O)[n-p;=0. (17)

These conditions together with E@.4) enable one to calcu-
late these critical values.

IV. REGIMES WITH ONE-PARAMETER SYMMETRY
BREAKING

The application of an external field makes the(&sym-
metry break down to various regimes with different residual
symmetries. In this section, we shall discuss the simplest
case of a single parameter hierarchy. There are three special
directions in the weight space of $). If the external field
is supplied along those directions, i.e., eithgr h,, orhgin
Eq. (6) does not vanish, a partial breaking of a(@\to U(1)
will take place. Let us consider the different cases.
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FIG. 1. The magnetizatiod?, S*, T?, UZ? of the system with1) gs=0, g;=—9,; (2) 9,=0, gs= —¢g;; and(3) gs=0, g;=9,

A. Residual SU3)XU(1) symmetry The magnetization process can be clearly illustrated by

If g.=0, g;=—g,>0, the Zeeman interactiofL0) be- the evolution of the Young tableau,

comes I . oo peepeseeees
M*=29:05=gM" - 2g:M". (18 : E:::::E E '::ﬂ E:z:z:::@
¥

The occurrence of the operat@j makes the Hamiltonian o . .
noncommutable wittO3 . Thus an S(R) subgroup gener- which shows the evolution from an '$4) singlet to SU(3)
ated byO%, O , O3 is broken down to \(1). Analyzing the X U(1) Zstates and then to an &) singlet. Physically, we
level crossing from Eq(9), we shown the magnetization have M*/N=0 at zero external field bec@use one-quarter of
curve in Fig. 1. the total sites are each of the stafés, [1), |1), and]]).
Because the terng; + g, andgs— g, in the first two equa-  Turning on the external field leads to the spin-orbital flip-
tions of Egs.(14) are nonpositive, the external field cannot pings [|)—|1), [1)—|T), and||)—|]), which result in
enhance the two dress energie®) and {(u); the Fermi  nonvanishing magnetization. The SU@Y(1) symmetry
points in both\ and u sectors are fixed. On the contrary, the causes the above three flipping processes to occur simulta-
Zeeman term has a positive contribution&@), and its two  neously. When the external field exceeds a critical value, the
Fermi points will decline when the external field increasesmaterial goes into phase Iil where all the state} have
Although it is an SW4) singlet labeled by the Young tableau peen flipped over. In this phase theomponents of the total
[n*] in the absence of an external field, the ground Stat%pin and total orbital stay positive constaB/N=T%N
possess a residual SU(8U(1) symmetry in the presence =1/6, while that ofU? stays a negative constabl¥/N=
of the aforementioned one-parameter external field at small 1,5 Consequently, the magnetization reaches a saturation
magnitude, which corresponds to phase IV labeled by th?/alueMZ/N=2/3, and the ground state becomes theSU

four-row Young tableau. In this regime there are still threegjngjet regardless of the magnitude of the external field in
types of rapidity that solve the Bethe-ansatz equation. Th%hase m

U(1) is generated bp3, while the SU3) is generated by the
following eight operators:

B. Residual SU2) X SU(2) symmetry
1 1 Applying the external field along the direction of the sec-

Oi:E(TZJF U9, OE:Q(SZ_TZ)’ ond simple root of si#) Lie algebra, we will have a symme-
try breaking from SW) to SU(2)xU(1)XSU(2) for the

1 ground state. This is realized by the choice of Lagdac-
0, = 5 +SZ)T+, 0,=S'T", torsg,=0, gs<= —g;, which makes the magnetization
1 Me= ngoéz gsM—2g;M’+gsM” (20)
O, = 2 +SZ)T’ 0,=S"T", These two S(P) are generated, respectively, by
L 1 Treuy, | Eeg)re
Of,,=S'|5+T?|, Or,,=S|5+T*|. (19 2 12 '
There exists a critical field when those two Fermi points N N
shrink to zero; the rapidity disappears in the Bethe-ansatz Z(TF=U9 | 5= T . (21)

equation. Thus a quantum phase transition occurs at the criti-
cal field which separates two phases; we call them phase I¥s gs—g; in the second equation of E(L4) is positive but
and phase IIl. bothg;+g, andg,;— g, in the first and the third equations are
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FIG. 2. The magnetizationM?, S*, T#, U of the system withgs=2, g,=9gs+9;, andg,=2.0,1.5,1.0,0.5,0.6;,0.5,-1.0.

negative, the external field makes the Fermi points inghe

quantum phase transition occurs is determinedZ69)|n_ % H—O-
=0. This critical point separates two different phases; we t (17

call them phase IV and phase II.
The magnetization curve is shown in Fig. 1. It can also bezrom Fig. 1, we see that the spin, orbital, do#are polar-

illustrated by the evolution of the Young tableau

]

It is helpful to illustrated this process by the evolution of
sector shrink. The critical value of the external field when thethe Young tableau

- O0—0O0

—

ized simultaneously versus external field. The above Young
tableau indicates that the statgs, ||), ||) change to the
state|]) simultaneously because they carry out a®Uep-
resentation and the system possesse@S&ymmetry. After

the system is fully polarized, the magnetization reaches the

maximum valueM?* N=1/2. Then the residual symmetry of

The spin-orbital flipping process caused by the applied ex: .
ternal field has several characteristics. During the flippingthe ground state is only ).

process,||) and|]) flip simultaneously into|) and |1)
pairs, which reduces the four-row Young tableau to a two-
row Young tableau when across the critical field. Apparently,
the eigenvalues of both* andU? do not change during the In the previous section, we discussed the simplest case
magnetization process. Onff contributes to the magneti- where merely one S@) subgroup symmetry is broken. In
zation M? The total spin is completely polarizdéde., M*  the following, we will consider regimes with two-parameter
is saturateflonce phase IV transits to phase Il. The phasesymmetry broken, which involves more 8) subgroups.

V. REGIMES WITH TWO-PARAMETER SYMMETRY
BREAKING

that Yamashitaet al® discussed is in this special case.

C. Residual U 1) X SU(3) symmetry

If gs=0 andg;=g,, the magnetization becomes

M?*=29,07=g;(N-2M+M"),

guantum phase transition is related only to theector. The
critical value is determined by(0)|hc=0. This critical point

(22

A. Residual U(1) XU(1) XSU(2) symmetry
Under the restrictiorg,=gs+g;, the magnetizatior{8)

becomes

M?=2(gs+gy) O3 +29,03,

(23

which indicates that the residual symmetry of the ground

state is U(1 X U(1)XSU(2), inwhich the SW2) is gener-
ated byO3=(T?—U?/2 andO5 =T~ (1/2—S?).

which implies that the external field was applied along the The magnetization curves for differegt are plotted in
first simple root of s(#) Lie algebra. This gives rise to a Fig. 2, and the phase diagram in termsgpfgs versush is
symmetry breaking down to U(XSU(3) for the ground given in Fig. 3. On the one hand, because the eigenvalue of
state. For the sake of saving space, we omitt the operators equals that ofJ? for both state$]) and|1), the flipping

that generate these symmetries. Because this parameigfocess occurring in phase Il contributes to the magnetiza-
choice implies thag;+g, in the \ sector is positive but the tion of both T? and U? equivalently. On the other hand, the

g factor terms in bothu and v sectors are nonpositive, the flipping from || ) and|]) occurs simultaneously in phase IV
due to the S(P) symmetry. As a result, the magnetizations
of T? andU? are expected to be the same in the whole pro-
separates the system into two phases, phase IV and phaseéss, which can be seen from our numerical calculation in
The magnetization process is shown in Fig. 1.

Fig. 2.
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1

1
0.5 0.5
o v o~
~. OfF ~. Of
0 o
0.5+ 0.5
L 1 ' | L | L L | L 1 s |
15 1 2 3 4 o 1 2 3 4
external field: 7 external field: &
FIG. 3. The phase diagram g@f /g, versush with g,=gs+g; FIG. 5. The phase diagram of, /g, versush with g;=0 and
and residual symmetry U(RU(1)XSU(2). residual symmetry U(2X SU(2)x U(1).

For g,/gs<0.5, there exist three distinct phases, denoted
by IV, Il, and |, respectively according to the number of rows
of the Young tableau. The SB) symmetry makes the states

—1/2. The magnetization process in the regierl/2
<0:/9s<1/2 can be illustrated by the following evolution of
|1) and|]) flip simultaneously when the external field in the Young fableau:
creases. This makes the four-row Young tableau turn into a ¢ E E B 3::}:["'] - E::P"'] -u.n
two-row Young tableau directly; hence the phase Ill labeled &
by a three-row Young tableau will not occur. The boundary
between phase IV and phase Il is determined f@i@®)=0  The boundary between phase IV and phase | is determined
and £(0)=0 together, by £(0)=0, £(0)=0, and&(0) together,

1
91/9s=5 + 5, Ku0)*£(0), (24) 3
_ 9:/gs=5p— 1. (26)
where* denotes a convolution, aridcan be computed from
Egs.(14) numerically. For a sufficiently large external field,
all S T, andU are frozen in the direction, which leads to
phase I. The boundary between phase | and phase Il is d
termined bye(0)=0, i.e.,

g’he common solution of Eq924)—(26) gives h=1 and
0:/9s=1/2, which is a three-phase coexistence point.

gt/gS:%_ % (25) B. Residual U(1) X SU(2) XU(1) symmetry
If the external field along the direction of the second
This can also be derived from the competition between theimple root is quenched but those along the other directions
states related to the Young tableau—1,1] and[N]. are kept, we will have symmetry breaking down to U(1)
The asymptotic behavior at larfps g,/gs=—1/2, which X SU(2)xU(1). This kind of symmetry breaking is caused
implies that the phase | will never occur as longgaégs by the Zeeman term of the following magnetization:

2 . T . T . 0.5 T T T T 0.5 T T - ™ T 0.5
< 04
15 04 A9 04 L
: 03
§ 03 4 0.3 02
S 1 1 % 1% r 12
02t 4 o2f 011 £
0.5 - — 8,220, -- =00 F 0k:.
‘ o.1f g=15 —g=05 4 g Jf 4
g m10, - g =10 d 0.1
& [ 8,=0.5 1 r ] |
L | ) | L | L L | L | L | L L | L | ‘ | L _ ‘ | L | L |
00 1 2 3 4 00 1 2 3 4 OO 1 2 3 4 0'20 1 2 3
external field:A external field: & external field: 4 external field: A

FIG. 4. The magnetizatiopM?, S*, T?, UZ? of the system withg;=0, g;=2, andg,=2.0,1.5,1.0,0.5,0.6,0.5,~1.0.
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FIG. 6. The magnetizatiopM?, S*, T#, U? of the system withg;=2, g,= —9s—9;, andg,=2.0,1.5,1.0,0.5,0.6,0.5,-1.0.

M?=(g;+9,) O+ (9;— 9u) O3 (27 Obviously, the point ag,,/g;=0.5 andh=2 is a three-phase
coexistence point. The magnetization properties in the region
The magnetization curves with differegt, are plotted in  g,/g,>1/2 are similar to the case of U(X)SU(3); in
Fig. 4, and the phase diagram in termsggfig; versush is  particular, a larger U(TX SU(3) symmetry remains for
given in Fig. 5. Forg,/g;<1/2, there exist three phases de-g,/g;=1.
noted by IV, Ill, and |, respectively.
The boundary between phases IV and Il is determined C. Residual SU2)XU(1)XU(1) symmetry

from £=0, which can be solved numerically. For a suffi-
ciently large external field, the magnetization is saturate
while reaching phase I. This phase transition occurs at

d The third case of two-parameter symmetry breaking is
produced by the Zeeman term with restriction to the Lagde
factorg,= —gs—0;. The magnetization now reads

(28) M?=29:05+2(gs+ )O3, (30)

which breaks the S4) symmetry down to SU(2x U(1)
Thus if g, /g,< — 1/2, phase | will never occur regardless of XU(1).
the magnitude of the external field. So in the regien/2 The magnetization curves for differegt/gs are plotted
<g,/9;<1/2, the magnetization process can be illustratedn Fig. 6, and the phase diagram in termgjpfgs versush is
by the Young tableau given in Fig. 7. In the region of,/gs>—1/2, there exist
three phases denoted by IV, I, and Il, respectively. The final
AT OO~ O~-000 state is characterized by a two-row Young tableau at suffi-
Frl. _F F cient large external field due to the 8 symmetry. The
% HE E - ... boundary separating phases lll and Il is determined by
£(0)=0, which reads

In phase lll, the length of the second row and that of the 1 In2
third row in the corresponding Young tableau are always gt/gs=§—T. (31
equal due to the S@@) symmetry. Thus the probability of
pure spin flipping||)—|1) and pure orbital flipping||) 1
—||) is the same. Additionally, the procels)—|1) con-
tributes the same for the magnetizationS3fand T2. These
properties result in the same magnetization curveS*and 05

TZ shown in Fig. 4. Flipping over the staf¢) which has
positive eigenvalue o) brings about a negative magneti-
zation of U% in phase IV.

Phase | will never occur fog,/g;<—1/2, is similar to
the case of SU(3¥U(1). Actually, it recovers the case of
residual SU(3XU(1) symmetry ag,/g;=—1,

If 9,/9:>1/2, we can see from Fig. 5 that phase IV tran-
sits into phase | directly along with an increase of the exter-
nal field. The boundary which separates these two phases i
determined by 15 : I : > ' 3

external field: &

2 1
9/0=1," 5

8,8,
T

0.5

9./9 :§—1 (29) FIG. 7. The phase diagram @f;/gs versush with g,= —gg
Uttt —g,. and residual symmetry SU()U(1)x U(1).

144405-7



GU, LI, AND ZHOU PHYSICAL REVIEW B 69, 144405 (2004

Obviously, if g./gs>1/2, phase Il will never occur regard- factors, which makes it possible to investigate the problem in
less of the magnitude of the external field, and the magnetiterms of a unified external field. Then all possible symmetry

zation process is similar to the case of SU3)(1). breakings and the corresponding magnetization processes in-
In the region—1/2<g,/g,<1/2, the magnetization pro- duced by that external field are studied. The ground-state
cess can be illustrated by the following Young tableau, phase diagram caused by the competition of quantum fluc-
tuation and the Zeeman-like effect is studied by solving the

4 [1-11 jjj}::]-. ::3::}-—5::5 Bethe-ansatz equations numerically. The phase transition

: . boundaries are derived by studying the dress-energy equa-

F O tions analytically. The features of various phases and transi-

) o tions between them are explained in detailed by group theory
Figure 6 shows that the magnetization processeS“ofl*,  analysis. Although the “magnetization” curves are calculated
andU? are quite different. In phase IV, the flipping frofh) from the Bethe-ansatz solution of a one-dimensional model,
to three other states gives a positive contributiorBtaand  the analysis of the symmetry broken is not restricted to one
T#, but a negative contribution tdZ. In phase 111,S* under-  dimension.
goes polarization continually, while* undergoes polariza- Our results showed that a spin system with orbital degen-
tion but T* undergoes antipolarization. Since in the final eracy possesses a rich phase diagram in comparison to the
phase both eigenvalues are zero and the spin magnetizatispin-only Heisenberg model. These features in the phase dia-
is saturated, this phase will not change for any further ingram are expected to provide some clues toward detecting
crease of the external field. the competition and interplay between spin and orbital de-

The pointg,/gs=0.5,h=1In 2 is a three-phase coexistence grees of freedoms. Since the orbital state can be controlled
point. It can be seen that there exist two phases merely fdoy a magnetic, electric, or stress field, the quantification of
0.,/9:<—1/2, and phase IV transits into phase Il directly. the magnetization versus these generalized external fields in
Actually, the residual symmetry of SU(X)U(1)XSU(2) is  our discussion presented a possibly measurable description

restored whemy,/gs=—1. of the response with respect to those generalized external
fields. They are actually relevant to the anisotropy in spin-
VI. SUMMARY orbital superexchange and John-Teller distortion.

In the above, we studied the magnetization properties of
an SU4) spin-orbital chain in the presence of a generalized ACKNOWLEDGMENTS
external field that has three parameters because the Cartan
subalgebra of 94) Lie algebra has three generators. These This work was supported by trans-century projects, Che-
three parameters are reset so as to relate them to th&sspinung Kong projects of the China Education Ministry, and
orbital T, and their product). We called them three Landg  NSFC Grants No. 10225419 and No. 90103022.
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