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Phase diagram and symmetry breaking of an SU„4… spin-orbital chain
in a generalized external field

Shi-Jian Gu and You-Quan Li
Zhejiang Institute of Modern Physics, Zhejiang University, Hangzhou 310027, People’s Republic of China

Huan-Qiang Zhou
Center for Mathematical Physics, School of Physics Science, The University of Queensland, 4072, Australia

~Received 17 November 2003; published 5 April 2004!

The ground-state phases of a one-dimensional SU~4! spin-orbital Hamiltonian in a generalized external field
are studied on the basis of the Bethe-ansatz solution. Introducing three Lande´ g factors for spin, orbital, and
their products in the SU~4! Zeeman term, we systematically discuss various symmetry breakings. The magne-
tization versus external field is evaluated by solving the Bethe-ansatz equations numerically. The phase dia-
grams corresponding to distinct residual symmetries are given by means of both numerical and analytical
methods.
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I. INTRODUCTION

There has been much interest in the study of spin mo
with orbital degeneracy1–10 due to experimental progress r
lated to many transition-metal and rare-earth compou
such as LaMnO3 and CeB6, and the perovskite lattice, as i
KCuF3 .5,6 Those systems involve an orbital degree of fre
dom in addition to that of spin. Almost three decades a
Kugel and Khomskii11 pointed out the possibility of orbita
excitations in this system. As a model system, it exhib
some fascinating physical features that do not occur in
absence of the orbital degree of freedom. The isotropic c
of a spin system with orbital degeneracy was shown to h
an enlarged SU~4! symmetry,1 and the one-dimensiona
model is known to be exactly solvable.2,12 Materials related
to spin-orbital systems in one dimension include quasi-o
dimensional tetrahis-dimethylamino-ethylene C60,13 artificial
quantum dot arrays,14 and degenerate chains in Na2Ti2Sb2O
and Na2V2O5 compounds.15,16 It is therefore worthwhile to
systematically study the features of the model. A theoret
study2 found a strong interplay of the orbital and spin d
grees of freedom in the excitation spectra. It has been not
that the presence of the orbital degree of freedom may re
in various interesting magnetic properties. Applying a co
ventional magnetic field, the spin-orbital chain with SU~4!
symmetry is shown to reduce to a model with orbital SU~2!
symmetry9 in the ground state. Recently, we showed that
magnetization process becomes more complicated if the
tribution of the orbital sector is taken into account.10 We
explained that the competition between spin and orbital
grees of freedom leads to an orbital antipolarization pha
However, the external field we introduced in Ref. 10 is n
the most general one for SU~4! systems. There is both an
isotropy in spin-orbital superexchange and John-Teller
tortion that break the degeneracy of theeg orbital;5 this al-
lows us to consider the most generalized external fields
the following.

In this paper, we study an SU~4! spin-orbital chain in the
presence of a generalized external field on the basis o
0163-1829/2004/69~14!/144405~8!/$22.50 69 1444
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Bethe-ansatz solution. Our paper is organized as follows
Sec. II, we introduce the Bethe-ansatz solution and
Zeeman-like term which is going to be added to the origi
SU~4! Hamiltonian. In Sec. III, we give some useful remar
about the quantum number configurations of the ground s
in the presence of an external field that is characterized
three parameters. We also demonstrate the thermodyn
limit of the Bethe-ansatz equation and briefly present
dress-energy description of the ground state in the prese
of an external field. In Sec. IV, we study the magnetizati
properties of a Hamiltonian in the regime with on
parameter symmetry breaking. In Sec. V, we study both
magnetization and the phase diagram in regimes with t
parameter symmetry breaking. Various phases and quan
phase transitions are investigated by both numerical calc
tion and analytical formulation. Concerning the vario
phases, we give a detailed explanation in terms of gro
theory. Section VI includes a summary.

II. THE MODEL AND ITS SOLUTION

We start from the following Hamiltonian:

H5(
j 51

N F S 2Tj•Tj 111
1

2D S 2Sj•Sj 111
1

2D21G , ~1!

whereSj andTj denote the spin and orbital operators at s
j, respectively. Both of them are generators of the SU~2!
group characterizing the spin and orbital degrees of freed
of outer shell electrons in some transition-metal oxides in
insulating regime. The coupling constant is set to unity
simplicity. It has been pointed out that the above Ham
tonian possesses an enlarged SU~4! symmetry1 rather than
SU(2)3SU(2) symmetry.

The four states that carry the fundamental representa
of the SU~4! group are denoted by

u↑I &5u1/2,1/2&, u↑̄&5u1/2,21/2&,

u↓I &5u21/2,1/2&, u↓̄&5u21/2,21/2&. ~2!
©2004 The American Physical Society05-1



a
-
s
-

ele

t
b

s

tz

-

f the

al
n-

rs to

an
the

de

-
ace.

first
te,

he
the

ich

o.
an

GU, LI, AND ZHOU PHYSICAL REVIEW B 69, 144405 ~2004!
These bases are labeled by the eigenvalues ofSz andTz, i.e.,
uSz,Tz&. As the su~4! Lie algebra is of rank 3, there exists
third generator 2SzTz which is simply the anisotropic hybrid
ized spin-orbital interaction and possesses a simultaneou
genvalue together withSz andTz. For convenience, we de
note this new generator byUz hereafter. In the terminology
of group theory, however, the quadruplet can also be lab
by the weight vectors defined by eigenvalues ofO1

z , O2
z ,

andO3
z that constitute the Cartan subalgebra of the su~4! Lie

algebra. Here we adopt the Chevalley basis because
physical quantities can be conveniently expressed in this
sis.

The eigenvalues ofSz, Tz, Uz as well as that ofO1
z , O2

z ,
O3

z are given in Table I. The relation between these two ba
reads2

Sz5O1
z12O2

z1O3
z ,

Tz5O1
z1O3

z ,

Uz5O1
z2O3

z . ~3!

The present model~1! has been solved by Bethe-ansa
method.2,12 Its energy spectrum is given by

E0~M ,M 8,M 9!52 (
a51

M
1

1/41la
2 , ~4!

where thel’s are solutions of the following coupled tran
scendental equations:

2pI a5Nu21/2~la!1 (
a851

M

u1~la2la8!

1 (
b51

M8

u21/2~la2mb!,

2pJb5 (
a51

M

u21/2~mb2la!1 (
b851

M8

u1~mb2mb8!

1 (
c51

M9

u21/2~mb2nc!,

2pKc5 (
b51

M8

u21/2~nc2mb!1 (
c851

M9

u1~nc2nc8!, ~5!

TABLE I. The eigenvalues ofSz, Tz, Uz and thez component of
O1

z , O2
z , O3

z for the four basis states@Eq. ~2!#.

State Sz Tz Uz O1
z O2

z O3
z

u↑I & 1/2 1/2 1/2 1/2 0 0

u↑̄& 1/2 21/2 21/2 21/2 1/2 0

u↓I & 21/2 1/2 21/2 0 21/2 1/2

u↓̄& 21/2 21/2 1/2 0 0 21/2
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whereua(x)522 tan21(x/a). l, m, andn are rapidities re-
lated to the three generators of the Cartan subalgebra o
su~4! Lie algebra. The quantum numbers$I a ,Jb ,Kc% specify
a state in which there areN2M sites in the stateu↑I &, M

2M 8 in u↑̄&, M 82M 9 in u↓&, andM 9 in u↓&. Hence thez
components of total spin, orbital, andUz are obtained as
Stot

z 5N/22M 8, Ttot
z 5N/22M1M 82M 9, and U tot

z 5N/2
2M1M 9.

In the present SU~4! model, a three-parameter extern
field (h1 ,h2 ,h3) can be introduced to express the most ge
eral Zeeman-like energy:

HZee5(
m

3

hmOm
z . ~6!

To make the physics clearer, we reselect the paramete
write the effective magnetizationMz as

Mz5gsStot
z 1gtTtot

z 1guU tot
z , ~7!

wheregs , gt , andgu are generalized Lande´ g factors forSz,
Tz, and Uz, respectively. Equation~7! can be expressed in
terms of the number of rapidities,

Mz5
N

2
~gs1gt1gu!2M ~gt1gu!2M 8~gs2gt!

2M 9~gt2gu!. ~8!

Because the Zeeman-like term commutes with the SU~4!
Hamiltonian~1!, the energy spectrum in the presence of
external field is simply related to the energy spectrum in
absence of the external fieldh:

E~h,M ,M 8,M 9!5E0~M ,M 8,M 9!2hMz, ~9!

whereE0(M ,M 8,M 9) is determined by Eqs.~5!. Obviously,
the application of an external field with a different magnitu
just brings about various level crossings.

In terms ofO1 , O2 , andO3 , the magnetization~7! be-
comes

Mz5~gs1gt1gu!O1
z12gsO2

z1~gs1gt2gu!O3
z ,

~10!

which breaks SU~4! symmetry down to various lower sym
metries depending on the distinct regions in parameter sp

III. THE GROUND-STATE CONFIGURATION

Based on the Bethe-ansatz solution of the model, we
give the quantum number description of the ground sta
which is useful for numerical calculation. We also give t
dress-energy description for the ground state and propose
conditions that determine quantum phase transitions, wh
is useful for analytic study.

It is known1,2 that the ground state of the Hamiltonian~1!
is an SU~4! singlet for the case ofN54n. The configuration
of the quantum number for the ground state$I a ,Jb ,Kc% (a
51,2,...,3n; b51,2,...,2n; c51,2,...,n) is consecutive inte-
gers ~or half integers! arranged symmetrically around zer
In the presence of a magnetic field, however, the Zeem
5-2
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PHASE DIAGRAM AND SYMMETRY BREAKING OF AN . . . PHYSICAL REVIEW B69, 144405 ~2004!
term brings about level crossings, and the state withM
53n, M 852n, M 95n is no longer the ground state. Ther
fore the numbersM, M 8, M 9 for the lowest-energy state ar
related to the magnitude of the applied external field.

In order to solve the Bethe-ansatz equation numerica
we need to determine the possible configurations of quan
numbers for given values ofM, M 8, andM 9. The property
of the Young tableau requires that Max(M )53N/4,
Max(M 8)5N/2, Max(M 9)5N/4, and N2M>M2M 8
>M 82M 9>M 9 for a givenN. Then one is able to analyz
the change of energy level for each state, which determ
the true ground state for a given external field. One can a
calculate the magnetization by Eq.~8!.

In the thermodynamic limit, the energy~9! is expressed in
terms of the densities of the rapidities,

E/N52
h

2
~gs1gt1gu!1E

2l0

l0
s~l!@22pK1/2~l!

1~gt1gu!h#dl1~gs2gt!hE
2m0

m0
v~m!dm

1~gt2gu!hE
2n0

n0
t~n!dn. ~11!

These densities satisfy the following coupled integral eq
tions:

s~l!5K1/2~l!2E
2l0

l0
K1~l2l8!s~l8!dl8

1E
2m0

m0
K1/2~l2m!v~m!dm,

v~m!5E
2l0

l0
K1/2~m2l!s~l!dl2E

2m0

m0
K1~m2m8!

3v~m8!dm81E
2n0

n0
K1/2~m2n!t~n!dn,

t~n!5E
2m0

m0
K1/2~n2m!v~m!dm2E

2n0

n0
K1~n2n8!

3t~n8!dn8, ~12!

whereKn(x)5p21n/(n21x2) and l0 , m0 , andn0 are de-
termined by

E
2l0

l0
s~l!5

M

N
,

E
2m0

m0
v~l!5

M 8

N
,

E
2n0

n0
t~n!5

M 9

N
. ~13!

It is more convenient to introduce the dress energy.17 The
iteration of Eq.~12! gives rise to
14440
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m

es
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«~l!522pK1/2~l!1~gt1gu!h2E
2l0

l0
K1~l2l8!

3«~l8!dl81E
2m0

m0
K1/2~l2m!z~m!dm,

z~m!5~gs2gt!h1E
2l0

l0
K1/2~m2l!«~l!dl

2E
2m0

m0
K1~m2m8!z~m8!dm81E

2n0

n0
K1/2~m2n!

3j~n!dn,

j~n!5~gt2gu!h1E
2m0

m0
K1/2~n2m!z~m!dm

2E
2n0

n0
K1~n2n8!j~n8!dn8, ~14!

where«, z, andj are the dress energies in thel, m, andn
sectors, respectively. It is worthwhile to point out that t
dress energies are also the thermal potentials at zero
perature, i.e., exp(«/T)5rh/r, exp(z/T)5sh/s, and exp(j/T)
5vh/v. The thermal Bethe-ansatz equation in the ze
temperature limit turns into Eq.~14!. In terms of the dress
energy, the energy~11! is simplified to

E/N52
h

2
~gs1gt1gu!1E

2l0

l0
K1/2~l!«~l!dl. ~15!

Apparently, the ground state is a quasi-Dirac sea where
states of negative dress energy«(l),0, z(m),0, j(n)50
are fully occupied. The Fermi points of the three rapiditi
are determined by

«~l0!50, z~m0!50, j~n0!50. ~16!

The system will be magnetized if the applied field enhan
the dress energy, because it makes the corresponding F
points decline. A quantum phase transition occurs when
of the Fermi points shrinks to zero. As a result, the critic
values of the external field are solved using

«~0!uh5hc
50, z~0!uh5h

c8
50, j~0!uh5h

c9
50. ~17!

These conditions together with Eq.~14! enable one to calcu
late these critical values.

IV. REGIMES WITH ONE-PARAMETER SYMMETRY
BREAKING

The application of an external field makes the SU~4! sym-
metry break down to various regimes with different residu
symmetries. In this section, we shall discuss the simp
case of a single parameter hierarchy. There are three sp
directions in the weight space of SU~4!. If the external field
is supplied along those directions, i.e., eitherh1 , h2 , or h3 in
Eq. ~6! does not vanish, a partial breaking of a SU~2! to U~1!
will take place. Let us consider the different cases.
5-3
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FIG. 1. The magnetizationMz, Sz , Tz , Uz of the system with~1! gs50, gt52gu ; ~2! gu50, gs52gt ; and ~3! gs50, gt5gu .
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A. Residual SU„3…ÃU„1… symmetry

If gs50, gt52gu.0, the Zeeman interaction~10! be-
comes

Mz52gtO3
z5gtM 822gtM 9. ~18!

The occurrence of the operatorO3
z makes the Hamiltonian

noncommutable withO3
6 . Thus an SU~2! subgroup gener-

ated byO3
z , O3

1 , O3
2 is broken down to U~1!. Analyzing the

level crossing from Eq.~9!, we shown the magnetizatio
curve in Fig. 1.

Because the termsgt1gu andgs2gt in the first two equa-
tions of Eqs.~14! are nonpositive, the external field cann
enhance the two dress energies«~l! and z~m!; the Fermi
points in bothl andm sectors are fixed. On the contrary, th
Zeeman term has a positive contribution toj~n!, and its two
Fermi points will decline when the external field increas
Although it is an SU~4! singlet labeled by the Young tablea
@n4# in the absence of an external field, the ground st
possess a residual SU(3)3U(1) symmetry in the presenc
of the aforementioned one-parameter external field at sm
magnitude, which corresponds to phase IV labeled by
four-row Young tableau. In this regime there are still thr
types of rapidity that solve the Bethe-ansatz equation.
U~1! is generated byO3

z , while the SU~3! is generated by the
following eight operators:

O1
z5

1

2
~Tz1Uz!, O2

z5
1

2
~Sz2Tz!,

O1
15S 1

2
1SzDT1, O2

15S1T2,

O1
25S 1

2
1SzDT2, O2

25S2T1,

O112
1 5S1S 1

2
1TzD , O112

2 5S2S 1

2
1TzD . ~19!

There exists a critical field when those two Fermi poin
shrink to zero; the rapidityn disappears in the Bethe-ansa
equation. Thus a quantum phase transition occurs at the
cal field which separates two phases; we call them phas
and phase III.
14440
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The magnetization process can be clearly illustrated
the evolution of the Young tableau,

which shows the evolution from an SU~4! singlet to SU(3)
3U(1) states and then to an SU~3! singlet. Physically, we
haveMz/N50 at zero external field because one-quarter
the total sites are each of the statesu↑I &, u↑̄&, u↓&, and u↓̄&.
Turning on the external field leads to the spin-orbital fli
pings u↓̄&→u↑I &, u↓̄&→u↑̄&, and u↓̄&→u↓&, which result in
nonvanishing magnetization. The SU(3)3U(1) symmetry
causes the above three flipping processes to occur sim
neously. When the external field exceeds a critical value,
material goes into phase III where all the statesu↓̄& have
been flipped over. In this phase thez components of the tota
spin and total orbital stay positive constantSz/N5Tz/N
51/6, while that ofUz stays a negative constantUz/N5
21/6. Consequently, the magnetization reaches a satura
valueMz/N52/3, and the ground state becomes the SU~3!
singlet regardless of the magnitude of the external field
phase III.

B. Residual SU„2…ÃSU„2… symmetry

Applying the external field along the direction of the se
ond simple root of su~4! Lie algebra, we will have a symme
try breaking from SU~4! to SU(2)3U(1)3SU(2) for the
ground state. This is realized by the choice of Lande´ g fac-
tors gu50, gs52gt , which makes the magnetization

Mz52gsO2
z5gsM22gsM 81gsM 9 ~20!

These two SU~2! are generated, respectively, by

H 1

2
~Tz1Uz!,S 1

2
1SzDT6J ,

H 1

2
~Tz2Uz!,S 1

2
2SzDT6J . ~21!

As gs2gt in the second equation of Eq.~14! is positive but
bothgt1gu andgt2gu in the first and the third equations ar
5-4
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FIG. 2. The magnetizationMz, Sz , Tz , Uz of the system withgs52, gu5gs1gt , andgt52.0,1.5,1.0,0.5,0.0,20.5,21.0.
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negative, the external field makes the Fermi points in thm
sector shrink. The critical value of the external field when
quantum phase transition occurs is determined byz(0)uhc

50. This critical point separates two different phases;
call them phase IV and phase II.

The magnetization curve is shown in Fig. 1. It can also
illustrated by the evolution of the Young tableau

The spin-orbital flipping process caused by the applied
ternal field has several characteristics. During the flipp

process,u↓& and u↓̄& flip simultaneously intou↑̄& and u↑I &
pairs, which reduces the four-row Young tableau to a tw
row Young tableau when across the critical field. Apparen
the eigenvalues of bothTz andUz do not change during the
magnetization process. OnlySz contributes to the magneti
zationMz. The total spin is completely polarized~i.e., Mz

is saturated! once phase IV transits to phase II. The pha
that Yamashitaet al.9 discussed is in this special case.

C. Residual U„1…ÃSU„3… symmetry

If gs50 andgt5gu , the magnetization becomes

Mz52gtO1
z5gt~N22M1M 8!, ~22!

which implies that the external field was applied along
first simple root of su~4! Lie algebra. This gives rise to
symmetry breaking down to U(1)3SU(3) for the ground
state. For the sake of saving space, we omitt the opera
that generate these symmetries. Because this param
choice implies thatgt1gu in the l sector is positive but the
g factor terms in bothm and n sectors are nonpositive, th
quantum phase transition is related only to thel sector. The
critical value is determined by«(0)uhc

50. This critical point
separates the system into two phases, phase IV and pha
The magnetization process is shown in Fig. 1.
14440
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It is helpful to illustrated this process by the evolution
the Young tableau

From Fig. 1, we see that the spin, orbital, andUz are polar-
ized simultaneously versus external field. The above You
tableau indicates that the statesu↑̄&, u↓&, u↓̄& change to the
stateu↑I & simultaneously because they carry out a SU~3! rep-
resentation and the system possesses SU~3! symmetry. After
the system is fully polarized, the magnetization reaches
maximum valueMz/N51/2. Then the residual symmetry o
the ground state is only U~1!.

V. REGIMES WITH TWO-PARAMETER SYMMETRY
BREAKING

In the previous section, we discussed the simplest c
where merely one SU~2! subgroup symmetry is broken. I
the following, we will consider regimes with two-paramet
symmetry broken, which involves more SU~2! subgroups.

A. Residual U„1…ÃU„1…ÃSU„2… symmetry

Under the restrictiongu5gs1gt , the magnetization~8!
becomes

Mz52~gs1gt!O1
z12gsO2

z , ~23!

which indicates that the residual symmetry of the grou
state is U(1)3U(1)3SU(2), in which the SU~2! is gener-
ated byO3

z5(Tz2Uz)/2 andO3
65T6(1/22Sz).

The magnetization curves for differentgt are plotted in
Fig. 2, and the phase diagram in terms ofgt /gs versush is
given in Fig. 3. On the one hand, because the eigenvalu
Tz equals that ofUz for both statesu↑I & and u↑̄&, the flipping
process occurring in phase II contributes to the magnet
tion of bothTz andUz equivalently. On the other hand, th
flipping from u↓& andu↓̄& occurs simultaneously in phase I
due to the SU~2! symmetry. As a result, the magnetizatio
of Tz andUz are expected to be the same in the whole p
cess, which can be seen from our numerical calculation
Fig. 2.
5-5
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For gt /gs,0.5, there exist three distinct phases, deno
by IV, II, and I, respectively according to the number of row
of the Young tableau. The SU~2! symmetry makes the state
u↓& and u↓̄& flip simultaneously when the external field in
creases. This makes the four-row Young tableau turn in
two-row Young tableau directly; hence the phase III labe
by a three-row Young tableau will not occur. The bounda
between phase IV and phase II is determined fromz(0)50
andj(0)50 together,

gt /gs5
1

2
1

1

2h
K1/2~0!* «~0!, ~24!

where* denotes a convolution, and« can be computed from
Eqs.~14! numerically. For a sufficiently large external fiel
all S, T, andU are frozen in thez direction, which leads to
phase I. The boundary between phase I and phase II is
termined by«(0)50, i.e.,

gt /gs5
1

h
2

1

2
. ~25!

This can also be derived from the competition between
states related to the Young tableau@N21,1# and @N#.

The asymptotic behavior at largeh is gt /gs521/2, which
implies that the phase I will never occur as long asgt /gs

FIG. 3. The phase diagram ofgt /gs versush with gu5gs1gt

and residual symmetry U(1)3U(1)3SU(2).
14440
d

a
d
y

e-

e

,21/2. The magnetization process in the region21/2
,gt /gs,1/2 can be illustrated by the following evolution o
the Young tableau:

The boundary between phase IV and phase I is determ
by «(0)50, z(0)50, andj~0! together,

gt /gs5
3

2h
21. ~26!

The common solution of Eqs.~24!–~26! gives h51 and
gt /gs51/2, which is a three-phase coexistence point.

B. Residual U„1…ÃSU„2…ÃU„1… symmetry

If the external field along the direction of the seco
simple root is quenched but those along the other directi
are kept, we will have symmetry breaking down to U(1
3SU(2)3U(1). This kind of symmetry breaking is cause
by the Zeeman term of the following magnetization:

FIG. 5. The phase diagram ofgu /gt versush with gs50 and
residual symmetry U(1)3SU(2)3U(1).
FIG. 4. The magnetizationMz, Sz , Tz , Uz of the system withgs50, gt52, andgu52.0,1.5,1.0,0.5,0.0,20.5,21.0.
5-6
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FIG. 6. The magnetizationMz, Sz , Tz , Uz of the system withgs52, gu52gs2gt , andgt52.0,1.5,1.0,0.5,0.0,20.5,21.0.
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Mz5~gt1gu!O1
z1~gt2gu!O3

z ~27!

The magnetization curves with differentgu are plotted in
Fig. 4, and the phase diagram in terms ofgu /gt versush is
given in Fig. 5. Forgu /gt,1/2, there exist three phases d
noted by IV, III, and I, respectively.

The boundary between phases IV and III is determin
from j50, which can be solved numerically. For a suf
ciently large external field, the magnetization is satura
while reaching phase I. This phase transition occurs at

gu /gt5
2

h
2

1

2
. ~28!

Thus if gu /gt,21/2, phase I will never occur regardless
the magnitude of the external field. So in the region21/2
,gu /gt,1/2, the magnetization process can be illustra
by the Young tableau

In phase III, the length of the second row and that of
third row in the corresponding Young tableau are alwa
equal due to the SU~2! symmetry. Thus the probability o
pure spin flippingu↓̄&→u↑̄& and pure orbital flippingu↓̄&
→u↓& is the same. Additionally, the processu↓̄&→u↑I & con-
tributes the same for the magnetization ofSz andTz. These
properties result in the same magnetization curves ofSz and
Tz shown in Fig. 4. Flipping over the stateu↓̄& which has
positive eigenvalue ofUz brings about a negative magne
zation ofUz in phase IV.

Phase I will never occur forgu /gt,21/2, is similar to
the case of SU(3)3U(1). Actually, it recovers the case o
residual SU(3)3U(1) symmetry atgu /gt521,

If gu /gt.1/2, we can see from Fig. 5 that phase IV tra
sits into phase I directly along with an increase of the ex
nal field. The boundary which separates these two phas
determined by

gu /gt5
3

h
21. ~29!
14440
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d
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Obviously, the point atgu /gt50.5 andh52 is a three-phase
coexistence point. The magnetization properties in the reg
gu /gt.1/2 are similar to the case of U(1)3SU(3); in
particular, a larger U(1)3SU(3) symmetry remains fo
gu /gt51.

C. Residual SU„2…ÃU„1…ÃU„1… symmetry

The third case of two-parameter symmetry breaking
produced by the Zeeman term with restriction to the Land´ g
factor gu52gs2gt . The magnetization now reads

Mz52gsO2
z12~gs1gt!O3

z , ~30!

which breaks the SU~4! symmetry down to SU(2)3U(1)
3U(1).

The magnetization curves for differentgt /gs are plotted
in Fig. 6, and the phase diagram in terms ofgt /gs versush is
given in Fig. 7. In the region ofgt /gs.21/2, there exist
three phases denoted by IV, III, and II, respectively. The fi
state is characterized by a two-row Young tableau at su
cient large external field due to the SU~2! symmetry. The
boundary separating phases III and II is determined
z(0)50, which reads

gt /gs5
1

2
2

ln 2

h
. ~31!

FIG. 7. The phase diagram ofgt /gs versush with gu52gs

2gt . and residual symmetry SU(2)3U(1)3U(1).
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Obviously, if gt /gs.1/2, phase II will never occur regard
less of the magnitude of the external field, and the magn
zation process is similar to the case of SU(3)3U(1).

In the region21/2,gt /gs,1/2, the magnetization pro
cess can be illustrated by the following Young tableau,

Figure 6 shows that the magnetization processes ofSz, Tz,
andUz are quite different. In phase IV, the flipping fromu↓̄&
to three other states gives a positive contribution toSz and
Tz, but a negative contribution toUz. In phase III,Sz under-
goes polarization continually, whileUz undergoes polariza
tion but Tz undergoes antipolarization. Since in the fin
phase both eigenvalues are zero and the spin magnetiz
is saturated, this phase will not change for any further
crease of the external field.

The pointgt /gs50.5,h5 ln 2 is a three-phase coexisten
point. It can be seen that there exist two phases merely
gu /gt,21/2, and phase IV transits into phase II direct
Actually, the residual symmetry of SU(2)3U(1)3SU(2) is
restored whengt /gs521.

VI. SUMMARY

In the above, we studied the magnetization properties
an SU~4! spin-orbital chain in the presence of a generaliz
external field that has three parameters because the C
subalgebra of su~4! Lie algebra has three generators. The
three parameters are reset so as to relate them to the spS,
orbital T, and their productU. We called them three Lande´ g
v

14440
ti-

l
ion
-

or

of
d
tan
e

factors, which makes it possible to investigate the problem
terms of a unified external field. Then all possible symme
breakings and the corresponding magnetization processe
duced by that external field are studied. The ground-s
phase diagram caused by the competition of quantum fl
tuation and the Zeeman-like effect is studied by solving
Bethe-ansatz equations numerically. The phase trans
boundaries are derived by studying the dress-energy e
tions analytically. The features of various phases and tra
tions between them are explained in detailed by group the
analysis. Although the ‘‘magnetization’’ curves are calculat
from the Bethe-ansatz solution of a one-dimensional mo
the analysis of the symmetry broken is not restricted to o
dimension.

Our results showed that a spin system with orbital deg
eracy possesses a rich phase diagram in comparison to
spin-only Heisenberg model. These features in the phase
gram are expected to provide some clues toward detec
the competition and interplay between spin and orbital
grees of freedoms. Since the orbital state can be contro
by a magnetic, electric, or stress field, the quantification
the magnetization versus these generalized external field
our discussion presented a possibly measurable descrip
of the response with respect to those generalized exte
fields. They are actually relevant to the anisotropy in sp
orbital superexchange and John-Teller distortion.
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