Green Synthesis of Reduced Graphene Nanostructure from Cinnamomum Camphora

2020 Letters in Applied NanoBioScience  
A facile green synthesis for carbon nanoparticle production using Cinnamomum camphora (Camphor) is presented. Camphor upon carbonization and chemical oxidation leads to the formation of nano-carbon structures with lateral size 7.33nm to 4.14nm, respectively. The nanomaterial's stacking height is about 2.76nm and 3.10nm, leading to the formation of about 10 layers of carbon. The AFM analysis confirms that the graphene layer formed is wrinkled or folded. Developments of a layered structure with
more » ... heroids are observed on the sample's surface, confirming the graphitization of the amorphous carbon. The relative intensity of the defect to the graphite band is found to be 0.98 for the nanostructure indicating a lesser degree of defects. The C1s band of the nanostructure is deconvoluted to components at 284.7, 286.5, 287.3, and 289 eV, which are assigned to non-oxygenated ring carbon (sp2 carbon), C in C-O (bound to O either as epoxy or hydroxyl), C in C=O (of alcohols, phenols or ether), and C in C(O)O (carboxylic acid) respectively. The study reveals the formation of few-layer oxygenated carbon layers from the botanical hydrocarbon.
doi:10.33263/lianbs101.20032011 fatcat:sgeufnvuyna73jzeja34faqnwi