A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2020; you can also visit the original URL.
The file type is application/pdf
.
Associative transducers for the parallel processing of streaming data
2017
Crowd-sourcing and the rise of the internet of things are causing a massive increase in the rate of streaming data that needs to be processed. At the same time CPU clock-speeds are stagnating so parallel algorithms are needed to process the high rate of data with low query response times. Automata and transducers are natural models for querying unbounded streams but are inherently sequential, processing each item of data in the stream in order. To continue to use automata and transducers for
doi:10.25560/50190
fatcat:uidvxefzhrbnrmieqaubwrdtj4