On the stability of a quadratic functional equation over non-Archimedean spaces

Gastão Bettencourt, Sérgio Mendes
2021 Filomat  
Let G be an abelian group and suppose that X is a non-Archimedean Banach space. We study Hyers-Ulam-Rassias stability for the functional equation of quadratic type f(x+y+z)+ f(x)+f(y)+f(z)=f(x+y)+f(y+z)+ f(z+x) where f : G ? X is a map.
doi:10.2298/fil2108693b fatcat:4snkkmccijd3ja2a6aykyaecri