Evaluation of Color and Scent Attractants Used to Trap and Detect Asian Ctirus Psyllid (Hemiptera: Liviidae) in Urban Environments

K. E. Godfrey, C. Galindo, J. M. Patt, M. Luque-Williams
2013 Florida Entomologist  
The Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae) is a serious pest of citrus due to its ability to vector the putative causal agent of huanglongbing, 'Candidatus Liberibacter asiaticus'. Populations of Asian citrus psyllid (ACP) can increase in density in urban areas and then move out into adjacent commercial citrus production. Current presence/absence detection methods for ACP in urban areas rely on the use of yellow sticky traps without a scent lure. This method was
more » ... . This method was selected because of its accepted use in commercial production, however, in urban areas it may not be the most efficient method for trapping ACP. Therefore, we investigated the relative trapping efficiency of 4 different colored traps (2 hues of yellow and 2 hues of green) and the addition of 2 scent lures to yellow sticky traps. The lures were based on the volatiles emitted either from flush growth of Eureka lemon or Mexican lime. The tests were conducted in residential areas in Los Angeles, California in 2011. All of the sites were dooryard sites and trapping was done with homeowner permission. There were no statistically significant differences in trap catch between the yellow and green traps, suggesting that any of the traps tested could be used for ACP detection in an urban environment. There was no correlation between flush density and trap catches. The host plant on which the colored traps were placed did not significantly influence trap catch, although numerically more ACP adults were captured on lemon and lime trees, regardless of trap color. When scent lures were added to yellow sticky traps, no statistically significant differences were found between traps with lures and those without lures, regardless of host plant. Trapping studies for ACP in the urban environment need to be continued using more sample sites to determine if the addition of scent lures based on plant volatiles will increase trap catches.
doi:10.1653/024.096.0420 fatcat:pto73tpfyrbv5bbcfxryumszim