Scalable Codes for Precision Calculations of Properties of Complex Atomic Systems

Charles Cheung, Marianna Safronova, Sergey Porsev
2021 Symmetry  
High precision atomic data are indispensable for studies of fundamental symmetries, tests of fundamental physics postulates, developments of atomic clocks, ultracold atom experiments, astrophysics, plasma science, and many other fields of research. We have developed a new parallel atomic structure code package that enables computations that were not previously possible due to system complexity. This code package also allows much quicker computations to be run with higher accuracy for simple
more » ... ems. We explored different methods of load-balancing matrix element calculations for many-electron systems, which are very difficult due to the intrinsic nature of the computational methods used to calculate them. Furthermore, dynamic memory allocation and MPI parallelization have been implemented to optimize and accelerate the computations. We have achieved near-perfect linear scalability and efficiency with the number of processors used for calculation, paving the way towards the future where most open-shell systems will finally be able to be treated with good accuracy. We present several examples illustrating new capabilities of the newly developed codes, specifically correlating up to all 60 electrons in the highly charged Ir17+ ion and predicting certain properties of Fe16+.
doi:10.3390/sym13040621 fatcat:xvgzlzxrmjh3rjlultgysgppnu