Two evolved supernova remnants with newly identified Fe-rich cores in the Large Magellanic Cloud

P. J. Kavanagh, M. Sasaki, L. M. Bozzetto, S. D. Points, E. J. Crawford, J. Dickel, M. D. Filipović, F. Haberl, P. Maggi, E. T. Whelan
2016 Astronomy and Astrophysics  
Aims. We present a multi-wavelength analysis of the evolved supernova remnants MCSNR J0506-7025 and MCSNR J0527-7104 in the Large Magellanic Cloud. Methods. We used data from XMM-Newton, the Australian Telescope Compact Array, and the Magellanic Cloud Emission Line Survey to study their broadband emission and used Spitzer and HI data to gain a picture of their environments. We performed a multi-wavelength morphological study and detailed radio and X-ray spectral analyses to determine their
more » ... etermine their physical characteristics. Results. Both remnants were found to have bright X-ray cores, dominated by Fe L-shell emission, consistent with reverse shock heated ejecta with determined Fe masses in agreement with Type Ia explosion yields. A soft X-ray shell, consistent with swept-up interstellar medium, was observed in MCSNR J0506-7025, suggestive of a remnant in the Sedov phase. Using the spectral fit results and the Sedov self-similar solution, we estimated the age of MCSNR J0506-7025 to be ~16-28 kyr, with an initial explosion energy of (0.07-0.84)x10^51 erg. A soft shell was absent in MCSNR J0527-7104, with only ejecta emission visible in an extremely elongated morphology extending beyond the optical shell. We suggest that the blast wave has broken out into a low density cavity, allowing the shock heated ejecta to escape. We found that the radio spectral index of MCSNR J0506-7025 is consistent with the standard ~0.5 for SNRs. Radio polarisation at 6 cm indicates a higher degree of polarisation along the western front and at the eastern knot, with a mean fractional polarisation across the remnant of P~(20 \pm 6)%. Conclusions. The detection of Fe-rich ejecta in the remnants suggests that both resulted from Type Ia explosions. The newly identified Fe-rich cores in MCSNR J0506-7025 and MCSNR J0527-7104 makes them members of the expanding class of evolved Fe-rich remnants in the Magellanic Clouds.
doi:10.1051/0004-6361/201527414 fatcat:rvvzac3d2bc63n4kdmtxggineq