UniBench: A Benchmark for Multi-model Database Management Systems [chapter]

Chao Zhang, Jiaheng Lu, Pengfei Xu, Yuxing Chen
2019 Springer Theses  
Unlike traditional database management systems which are organized around a single data model, a multi-model database (MMDB) utilizes a single, integrated back-end to support multiple data models, such as document, graph, relational, and key-value. As more and more platforms are proposed to deal with multi-model data, it becomes crucial to establish a benchmark for evaluating the performance and usability of MMDBs. Previous benchmarks, however, are inadequate for such scenario because they lack
more » ... a comprehensive consideration for multiple models of data. In this paper, we present a benchmark, called UniBench, with the goal of facilitating a holistic and rigorous evaluation of MMDBs. UniBench consists of a mixed data model, a synthetic multi-model data generator, and a set of core workloads. Specifically, the data model simulates an emerging application: Social Commerce, a Web-based application combining E-commerce and social media. The data generator provides diverse data format including JSON, XML, key-value, tabular, and graph. The workloads are comprised of a set of multi-model queries and transactions, aiming to cover essential aspects of multi-model data management. We implemented all workloads on ArangoDB and OrientDB to illustrate the feasibility of our proposed benchmarking system and show the learned lessons through the evaluation of these two multi-model databases. The source code and data of this benchmark can be downloaded at
doi:10.1007/978-3-030-11404-6_2 dblp:conf/tpctc/ZhangLXC18 fatcat:5sor5i6uvreobn3nthlfex2i5q