A Survey of Computational Tools to Analyze and Interpret Whole Exome Sequencing Data

Jennifer D. Hintzsche, William A. Robinson, Aik Choon Tan
<span title="">2016</span> <i title="Hindawi Limited"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/qe5jsynkezfovmnttfiupg7j3m" style="color: black;">International Journal of Genomics</a> </i> &nbsp;
Whole Exome Sequencing (WES) is the application of the next-generation technology to determine the variations in the exome and is becoming a standard approach in studying genetic variants in diseases. Understanding the exomes of individuals at single base resolution allows the identification of actionable mutations for disease treatment and management. WES technologies have shifted the bottleneck in experimental data production to computationally intensive informatics-based data analysis. Novel
more &raquo; ... computational tools and methods have been developed to analyze and interpret WES data. Here, we review some of the current tools that are being used to analyze WES data. These tools range from the alignment of raw sequencing reads all the way to linking variants to actionable therapeutics. Strengths and weaknesses of each tool are discussed for the purpose of helping researchers make more informative decisions on selecting the best tools to analyze their WES data.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1155/2016/7983236">doi:10.1155/2016/7983236</a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/28070503">pmid:28070503</a> <a target="_blank" rel="external noopener" href="https://pubmed.ncbi.nlm.nih.gov/PMC5192301/">pmcid:PMC5192301</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/qtlmgypwxjbv7ewg5wskhqxs4a">fatcat:qtlmgypwxjbv7ewg5wskhqxs4a</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20200209031837/http://europepmc.org/backend/ptpmcrender.fcgi?accid=PMC5192301&amp;blobtype=pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/c5/65/c565df86213cd2c321209e95ce1173e363ad3b61.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1155/2016/7983236"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="unlock alternate icon" style="background-color: #fb971f;"></i> hindawi.com </button> </a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5192301" title="pubmed link"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> pubmed.gov </button> </a>