Essays on Market Microstructure and Pathwise Directional Derivatives
[article]
Jana Bielagk, Humboldt-Universität Zu Berlin, Humboldt-Universität Zu Berlin
2018
Wir befassen uns mit Gleichgewichtsproblemen, die bei dem Zusammentreffen von Märkten und Marktteilnehmern entstehen, zuerst in einem Modell mit konkurrierenden Märkten mit Feedback und asymmetrischer Information und dann mit strategisch interagierenden Händlern. Zudem untersuchen wir spezielle Richtungsableitung im Kontext des pfadweisen Malliavinkalküls. Im ersten Kapitel analysieren wir ein Prinzipal-Agenten-Problem mit einem monopolistischen Dealer, der mit einem Crossing-Netzwerk (CN) um
more »
... n Handel mit Agenten mit privater Information konkurriert. Wir untersuchen die gewinnmaximierenden Angebote des Dealers für unterschiedliche Outside-Optionen und formulieren hinreichende Bedingungen für die Existenz und Eindeutigkeit einer optimalen Lösung. In unserem Modell ist die Einführung des CN für die Agenten vorteilhaft und ein Gleichgewichtspreis existiert. Im zweiten Kapitel analysieren wir den Einfluss vergleichender Leistungsbewertung von Händlern auf die Preisfindung im Marktgleichgewicht. Ein Derivat soll einen markträumenden Preis bekommen unter Beachtung der strategisch handelnden Agenten. Das Risiko eines Händlers setzt sich aus dem eigenen Risikoprofil und dem Erfolg des Handelns relativ zum durchschnittlichen Handelserfolg aller zusammen und er wird durch eine BSDE gemessen. Wir bestimmen einen repräsentativen Agenten und zeigen so die Existenz und Eindeutigkeit eines Gleichgewichtspreises. Weiterhin können wir diesen charakterisieren und im Spezialfall von entropischen Risikomaßen konkret berechnen. In diesem Spezialfall führen wir auch eine Parameteranalyse durch. Das dritte Kapitel verknüpft klassischen und pfadweisen Malliavinkalkül. Wir definieren und analysieren pfadweise Richtungsableitungen mit Hilfe von Perturbationen mit Cameron-Martin-Funktionen, mit (Hölder-)stetigen Funktionen, mit unstetigen Funktionen und mit Maßen. Somit sind sowohl die klassische Malliavin-Ableitung als auch Dupires vertikale Ableitung als Spezialfälle enthalten.
doi:10.18452/18817
fatcat:txaq5wnphbggxltryegr2kh45e