SPECIAL RELATIVITY AND SUPERLUMINAL MOTIONS: A DISCUSSION OF SOME RECENT EXPERIMENTS

ERASMO RECAMI, FLAVIO FONTANA, ROBERTO GARAVAGLIA
2000 International Journal of Modern Physics A  
Some experiments, performed at Berkeley, Cologne, Florence, Vienna, Orsay, Rennes, etc., led to the claim that something seems to travel with a group velocity larger than the speed c of light in vacuum. Various other experimental results seem to point in the same direction: For instance, localized wavelet- type solutions to Maxwell equations have been found, both theoretically and experimentally, that travel with superluminal speed. [Even muonic and electronic neutrinos [it has been proposed]
more » ... as been proposed] might be "tachyons", since their square mass appears to be negative]. With regard to the first-mentioned experiments, it was recently claimed by Guenter Nimtz that those results with evanescent waves (or tunneling photons) imply superluminal signal and impulse transmission, and therefore violate Einstein causality. In this note we want to stress that, on the contrary, all such results do not place relativistic causality in jeopardy, even if they referred to actual tachyonic motions: In fact, Special Relativity can cope even with superluminal objects and waves. For instance, it is possible (at least in microphysics) to solve also the known causal paradoxes, devised for faster than light motion, although this is not widely recognized yet. Here we show, in detail and rigorously, how to solve the oldest causal paradox, originally proposed by Tolman, which is the kernel of many further tachyon paradoxes (like J.Bell's, F.A.E.Pirani's, J.D.Edmonds' and others'). The key to the solution is a careful application of tachyon mechanics, as it unambiguously follows from special relativity. At Last, in one of the two Appendices, we propose how to evaluate the group-velocity in the case of evanescent waves. [PACS nos.: 03.30.+p; 03.50.De; 41.20.Jb; 73.40.Gk; 84.40.Az; 42.82.Et ]
doi:10.1142/s0217751x00001403 fatcat:ka73xubfhnfd3bhplbgj6zctcm