Arithmetic Cryptography

Benny Applebaum, Jonathan Avron, Chris Brzuska
2017 Journal of the ACM  
We study the possibility of computing cryptographic primitives in a fully-black-box arithmetic model over a finite field F. In this model, the input to a cryptographic primitive (e.g., encryption scheme) is given as a sequence of field elements, the honest parties are implemented by arithmetic circuits which make only a black-box use of the underlying field, and the adversary has a full (non-black-box) access to the field. This model captures many standard information-theoretic constructions.
more » ... prove several positive and negative results in this model for various cryptographic tasks. On the positive side, we show that, under reasonable assumptions, computational primitives like commitment schemes, public-key encryption, oblivious transfer, and general secure two-party computation can be implemented in this model. On the negative side, we prove that garbled circuits, multiplicative-homomorphic encryption, and secure computation with low online complexity cannot be achieved in this model. Our results reveal a qualitative difference between the standard Boolean model and the arithmetic model, and explain, in retrospect, some of the limitations of previous constructions. 12.
doi:10.1145/3046675 fatcat:qhxd4yf32nck5ldmkyxot5lwxy