Data-driven approximations of dynamical systems operators for control [article]

Eurika Kaiser, J. Nathan Kutz, Steven L. Brunton
2019 arXiv   pre-print
The Koopman and Perron Frobenius transport operators are fundamentally changing how we approach dynamical systems, providing linear representations for even strongly nonlinear dynamics. Although there is tremendous potential benefit of such a linear representation for estimation and control, transport operators are infinite-dimensional, making them difficult to work with numerically. Obtaining low-dimensional matrix approximations of these operators is paramount for applications, and the
more » ... mode decomposition has quickly become a standard numerical algorithm to approximate the Koopman operator. Related methods have seen rapid development, due to a combination of an increasing abundance of data and the extensibility of DMD based on its simple framing in terms of linear algebra. In this chapter, we review key innovations in the data-driven characterization of transport operators for control, providing a high-level and unified perspective. We emphasize important recent developments around sparsity and control, and discuss emerging methods in big data and machine learning.
arXiv:1902.10239v1 fatcat:23bw5qdalbenddnelslxtmes7m