High-dimensional Stochastic Inversion via Adjoint Models and Machine Learning [article]

Charanraj A. Thimmisetty, Wenju Zhao, Xiao Chen, Charles H. Tong, Joshua A. White
<span title="2018-03-16">2018</span> <i > arXiv </i> &nbsp; <span class="release-stage" >pre-print</span>
Performing stochastic inversion on a computationally expensive forward simulation model with a high-dimensional uncertain parameter space (e.g. a spatial random field) is computationally prohibitive even with gradient information provided. Moreover, the 'nonlinear' mapping from parameters to observables generally gives rise to non-Gaussian posteriors even with Gaussian priors, thus hampering the use of efficient inversion algorithms designed for models with Gaussian assumptions. In this paper,
more &raquo; ... e propose a novel Bayesian stochastic inversion methodology, characterized by a tight coupling between a gradient-based Langevin Markov Chain Monte Carlo (LMCMC) method and a kernel principal component analysis (KPCA). This approach addresses the 'curse-of-dimensionality' via KPCA to identify a low-dimensional feature space within the high-dimensional and nonlinearly correlated spatial random field. Moreover, non-Gaussian full posterior probability distribution functions are estimated via an efficient LMCMC method on both the projected low-dimensional feature space and the recovered high-dimensional parameter space. We demonstrate this computational framework by integrating and adapting recent developments such as data-driven statistics-on-manifolds constructions and reduction-through-projection techniques to solve inverse problems in linear elasticity.
<span class="external-identifiers"> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/1803.06295v1">arXiv:1803.06295v1</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/5he57texdjfxdl3kp5sydd3zzy">fatcat:5he57texdjfxdl3kp5sydd3zzy</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20200827171824/https://arxiv.org/pdf/1803.06295v1.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/6f/d0/6fd0a7964a785aefdc953f125ad2d503abe961ef.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/1803.06295v1" title="arxiv.org access"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> arxiv.org </button> </a>