Nonlinear maps preserving the mixed product [A ● B,C]* on von Neumann algebras

Changjing Li, Yuanyuan Zhao, Fangfang Zhao
2021 Filomat  
Let A and B be two von Neumann algebras. For A,B ? A, define by [A,B]* = AB-BA* and A ? B = AB + BA* the new products of A and B. Suppose that a bijective map ? : A ? B satisfies ?([A ? B,C]*) = [?(A)? ?(B),?(C)]* for all A,B,C ? A. In this paper, it is proved that if A and B be two von Neumann algebras with no central abelian projections, then the map ?(I)? is a sum of a linear *-isomorphism and a conjugate linear +-isomorphism, where ?(I) is a self-adjoint central element in B with ?(I)2 = I.
more » ... If A and B are two factor von Neumann algebras, then ? is a linear *-isomorphism, or a conjugate linear *-isomorphism, or the negative of a linear *-isomorphism, or the negative of a conjugate linear *-isomorphism.
doi:10.2298/fil2108775l fatcat:2jkd5zpbknanfkxfgxyxgxeary