Bayesian Active Edge Evaluation on Expensive Graphs [article]

Sanjiban Choudhury, Siddhartha Srinivasa, Sebastian Scherer
2017 arXiv   pre-print
Robots operate in environments with varying implicit structure. For instance, a helicopter flying over terrain encounters a very different arrangement of obstacles than a robotic arm manipulating objects on a cluttered table top. State-of-the-art motion planning systems do not exploit this structure, thereby expending valuable planning effort searching for implausible solutions. We are interested in planning algorithms that actively infer the underlying structure of the valid configuration
more » ... during planning in order to find solutions with minimal effort. Consider the problem of evaluating edges on a graph to quickly discover collision-free paths. Evaluating edges is expensive, both for robots with complex geometries like robot arms, and for robots with limited onboard computation like UAVs. Until now, this challenge has been addressed via laziness i.e. deferring edge evaluation until absolutely necessary, with the hope that edges turn out to be valid. However, all edges are not alike in value - some have a lot of potentially good paths flowing through them, and some others encode the likelihood of neighbouring edges being valid. This leads to our key insight - instead of passive laziness, we can actively choose edges that reduce the uncertainty about the validity of paths. We show that this is equivalent to the Bayesian active learning paradigm of decision region determination (DRD). However, the DRD problem is not only combinatorially hard, but also requires explicit enumeration of all possible worlds. We propose a novel framework that combines two DRD algorithms, DIRECT and BISECT, to overcome both issues. We show that our approach outperforms several state-of-the-art algorithms on a spectrum of planning problems for mobile robots, manipulators and autonomous helicopters.
arXiv:1711.07329v1 fatcat:vf4tggyp2jfvzb5gn6vra4eqpa