Towards New Optimized Artificial Immune Recognition Systems under the Belief Function Theory

Rihab Abdelkhalek
2022 Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence   unpublished
Artificial Immune Recognition Systems (AIRS) are powerful machine learning techniques, which aim to solve real world problems. A number of AIRS versions have produced successful prediction results. Nevertheless, these methods are unable to handle the uncertainty that could spread out at any stage of the AIRS approach. This issue is considered as a huge obstacle for having accurate and effective classification outputs. Therefore, our main objective is to handle this uncertainty using the belief
more » ... unction theory. We opt also in this article for an optimization over the classical AIRS approaches in order to enhance the classification performance.
doi:10.24963/ijcai.2022/817 fatcat:exzsbodemvhjbjekfei2vik4lq