A survey of recent advances in CNN-based single image crowd counting and density estimation

Vishwanath A. Sindagi, Vishal M. Patel
2018 Pattern Recognition Letters  
Estimating count and density maps from crowd images has a wide range of applications such as video surveillance, traffic monitoring, public safety and urban planning. In addition, techniques developed for crowd counting can be applied to related tasks in other fields of study such as cell microscopy, vehicle counting and environmental survey. The task of crowd counting and density map estimation is riddled with many challenges such as occlusions, non-uniform density, intra-scene and inter-scene
more » ... variations in scale and perspective. Nevertheless, over the last few years, crowd count analysis has evolved from earlier methods that are often limited to small variations in crowd density and scales to the current state-of-the-art methods that have developed the ability to perform successfully on a wide range of scenarios. The success of crowd counting methods in the recent years can be largely attributed to deep learning and publications of challenging datasets. In this paper, we provide a comprehensive survey of recent Convolutional Neural Network (CNN) based approaches that have demonstrated significant improvements over earlier methods that rely largely on hand-crafted representations. First, we briefly review the pioneering methods that use hand-crafted representations and then we delve in detail into the deep learning-based approaches and recently published datasets. Furthermore, we discuss the merits and drawbacks of existing CNN-based approaches and identify promising avenues of research in this rapidly evolving field.
doi:10.1016/j.patrec.2017.07.007 fatcat:ex3rtmm2jberzjcyebjpaaeluy