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Abstract
The ��-calculus is a dependent type theory with both linear and intuitionistic dependent function spaces. It can be
seen to arise in two ways. Firstly, in logical frameworks, where it is the language of the RLF logical framework
and can uniformly represent linear and other relevant logics. Secondly, it is a presentation of the proof-objects of
a structural variation, with Dereliction, of a fragment of BI, the logic of bunched implications. As such, it is also
closely related to linear logic. BI is a logic which directly combines linear and intuitionistic implication and, in its
predicate version, has both linear and intuitionistic quantifiers. The ��-calculus is the dependent type theory which
generalizes both implications and quantifiers. In this paper, we study the categorical semantics of the ��-calculus,
gives a theory of ‘Kripke resource models’, i.e. monoid-indexed sets of functorial Kripke models, in which the
monoid gives an account of resource consumption. A class of concrete, set-theoretic models is given by the category
of families of sets parametrized over a small monoidal category, in which the intuitionistic dependent function space
is described in the established way, but the linear dependent function space is described using Day’s tensor product.

Keywords: Dependent type theory, categorical semantics, Kripke models, logical frameworks, sub-structural logics.

1 Introduction

A long-standing problem has been to combine type-dependency and linearity. In [17], the
present authors introduced the ��-calculus, a first-order dependent type theory with a full
linear dependent function space, as well as the usual intuitionistic dependent function space.
The ��-calculus can be seen to arise in two ways: in logical frameworks and in linear and
bunched logics.

Logical frameworks. Logical frameworks are formal meta-logics which, inter alia, provide
languages for describing logics in a manner that is suitable for mechanical implementation.
Now, in order to describe a logical framework one must:

1. characterize the class of object-logics to be represented;
2. give a meta-logic or language, together with its meta-logical status vis- à-vis the class of

object-logics; and
3. characterize the representation mechanism for object-logics.

The above prescription can conveniently be summarized by the slogan

��������� � 	�
������
������
�����
�

We remark that these components are not entirely independent of each other.
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One representation mechanism is that of judgements-as-types, which originates from
Martin-Löf’s [21] development of Kant’s notion of judgement [18]. The methodology of
judgements-as-types is that judgements are represented as the type of their proofs. A logical
system is represented by a signature which assigns kinds and types to a finite set of constants
that represent its syntax, its judgements and its rule schemes. An object-logic’s rule and
proofs are seen as proofs of hypothetico-general judgements. Representation theorems relate
consequence in an object-logic �� to consequence in an encoded logic ���

���������� � � � � ������ �� Æ � ���� ���	
�� 
��
	��	�
	
� 	�
�����

�� � ���������� � � � � ��������� ���
�Æ � ���� �	�� � 
��
	��	�
	�

where � is the set of variables that occur in ��� �; ��� � are judgements; Æ is a proof-object
(e.g. a �-term); �� corresponds to � ; each �� corresponds to a place-holder for the encoding
of ��; and �Æ is a meta-logic term corresponding to the encoding of Æ.

The LF logical framework consists of the ��-calculus together with the judgements-as-
types mechanism for representing logics [1, 10, 29]. One consequence of this method of
encoding is that encoded systems inherit the structural properties of the meta-logic. Now, the
structural strength of LF is determined by the structural strength of the ��-calculus which, as
it stands in propositions-as-types correspondence with the �����-fragment of intuitionistic
logic, admits the structural rules of weakening and contraction. Consequently, LF is able to
uniformly represent, i.e. the encoding � is surjective on proof-objects, only logics which also
admit these structurals [34, 11].

We illustrate the use of LF by giving a brief example of how the �����-fragment of
Intuitionistic Logic (IL) is uniformly represented in LF via judgements-as-types. The natural
deduction presentation of this logic, in which the sole judgement is concerned with the �����
of a proposition, is as follows:

� ����� � �����
��

� � � �����

�� � �� �����
�� � ��� ��� � �

�� �����

���
...

� �����
� �

� � � �����

� � � ����� � �����
� ��

� �����

The signature 	�� begins by declaring the constant �
���� to represent the syntactic cate-
gory of propositions. We declare the constant ����� 
� � ���� to represent the object-logic
judgement. A proof of ��� � ����� is represented by a term of type �������� in the meta-
logic. The representation of the syntax is completed by declaring constants for each of the
two formula constructors:

�
� � � � � �
� � � � ��

The object-logic rules are then represented by the following declarations, where � � ��� ��:

AND-I 
 ��� �
� � ���������������������������� ���
AND-E� 
 ���� ��
� � ���������� � ��������������

IMP-I 
 ��� �
� � ��������������������������� ��� ���
IMP-E 
 ��� �
� � ������� ��� ������������ ���������
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A strong representation theorem — a bijection, in fact — can be given for this encoding
since the ��-calculus has the same structural strength as IL; both admit the structural rules
of weakening and contraction. It is, in fact, for this reason that LF cannot uniformly encode
linear and other relevant logics. To illustrate this point, suppose 	 ��� is a uniform encod-
ing of intuitionistic linear logic in LF, and that �� ��� ����� �Æ
���� is the image of the
object-consequence ���� ���� Æ
����. If �� ��� ����� �Æ
���� is provable, then so
is �� ������ ����� �Æ
����. By uniformity, the latter is the image of an object-logic
consequence ������ ���� Æ�
����, which implies weakening in linear logic, a contradic-
tion. This structural strength excludes from LF’s scope object logics involving the notions of
intension and state.

In [17], the present authors present a language in which such weakening and contraction
are not forced. The connectives of such a language are motivated by studying the natural
deduction form of rules for relevant logics and the resulting language forms the basis of the
RLF logical framework [17]. This is done quite generally, by considering Prawitz’s general
form of schematic introductions from a more relevant point of view. Consider a schematic

� rule as given by the figure below. In the rule, only the bound assumptions for � � are
shown; we elide those for �� , where � 	� �, for the sake of readability:

������ � � � ������
�

.

.

.
.
.
.

.

.

.

�� � � � �� � � � ��

�

��	�
 � � � 
 	�	

In the above rule, � 
 � 
 �. The � s, �s and �s are formulae constructed in the usual
way. An inference infers a formula 
���� � � � � ��� from � premisses ��� � � � � �� and may
bind assumptions of the form ��
�� � � � � ��

� which occur above the premiss �� . We let
the assumptions be multi-sets, thus keeping the structural rule of exchange. We require that
discharge be compulsory.

The introduction schema is annotated as follows to indicate the method of encoding: �
is the type of propositions, the � is the linear universal quantifier and � is the intuitionistic
universal quantifier. So we quantify over a linear proposition as �� 
� and over an intuition-
istic proposition as �� 
�. We also use �� �� for the latter and ���� to range over both
linear and intuitionistic quantifications. Each inference — that is, the binding of assump-
tions ��
�� � � � � ��

� above premiss �� and the inference of formula 
���� � � � � ��� from
premisses ��� � � � � �� — is represented by a Æ .

�	���
����
������

�������� � ��������
�

��

Æ

.

.

.

� � � � ��� �

Æ

.

.

.

� � � � ��

.

.

.
Æ

��	�
 � � � 
 	�	
Æ

�

The premisses ��� � � � � �� are combined either multiplicatively or additively, depending on
whether their contexts are disjoint or not. These combinations are distinguished by the use
of two conjunctions, the multiplicative� and the additive �, and so the structural strength is
forced. We have used � as meta-syntax for both � and �.
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In the meta-logic, then, the schematic introduction rule would be represented by a constant
of the following type:

��� � �� � ��
��� � � � ������
� ���
�� Æ ���� � � � Æ 
���� � � � � ����

where � 
  
 !� and ���
� represents an iterated �. From the general encoding formula
above, it can be seen that the connective � occurs only negatively, allowing us to curry it
away.

We emphasize how the three logical constants have been used in the framework: the � is
used to undertake additive conjunction; the � is used to quantify and (in its non-dependent
form�) to represent implication; and the � is used to represent dereliction from relevant in-
ference. It should be possible then to formulate a precise idea regarding the completeness of
the set ����������� with respect to all sentential operators that have explicit schematic
introduction rules [27, 40]. A similar analysis can be undertaken for the corresponding elim-
ination rule.

Thus, by analysing the form of relevant natural deduction, the ��-calculus can be seen
to arise as the language of the RLF logical framework, which consists of the ��-calculus
together with the judgements-as-types mechanism for representing logics. Since the ��-
calculus admits weakening and contraction only in highly restricted circumstances, deter-
mined by the �� � � translation of intuitionistic logic into linear logic, the structural
strength of RLF corresponds to that of intuitionistic linear logic and, so, is sufficiently weak
to uniformly represent systems such as linear and other relevant logics and stateful type sys-
tems such as ML with references [17]. In fact, RLF is closely related, via a propositions-as-
types correspondence [13, 16], to a structural variant (with Dereliction) of a fragment of the
bunched logic, BI.

Linear and bunched logics. The second way in which the ��-calculus arises is in the context
linear logic [9] and of BI, the logic of bunched implications [24]. In BI, a multiplicative (or
linear) and an additive (or intuitionistic) implication live side-by-side. The propositional
version of BI arises from an analysis of the proof-theoretic relationship between conjunction
and implication, and can be viewed as a merging of intuitionistic logic and multiplicative,
intuitionistic linear logic. Such a system requires that antecedents of logical consequences
be structured not as lists but rather as bunches, in which there are two kinds of combining
operation, ‘;’, which admits weakening and contraction and ‘,’, which does not. Bunches,
which originally arose in relevant logic [38], allow the formation of two kinds of function
space, the intuitionistic one�, corresponding to ‘;’ and the linear one�, corresponding to
‘,’.1 The introduction rules are given by

�� " � #
� �

� � "� #

��" � #
� ��

� � " � #

In eliminating the connectives, the premiss contexts must be combined with regard to the type
(whether linear or intuitionistic) of the connective.

� � "� # � � "
� �

��� � #

� � " � # � � "
� ��

��� � #
1The usual presentation of BI uses the symbol �� , or ‘magic wand’, to denote multiplicative implication. We

use� here simply for uniformity within this presentation.



Kripke Resource Models of a Dependently-typed, Bunched �-calculus 1065

A similar distinction obtains at the level of predicates and quantifiers. To see this, consider
the following form of first-order sequent:

��� � � � �

where � denotes the collection of first-order variables occurring in � and �. If we allow �
to be structured as a bunch, then we can identify two forms of universal quantifier, with the
following introduction rules:

�� � ���� � �

���� � ����
��

��� ��� � �
�����

���� � �
�
����

where � 	� FV���.2

The rule of Dereliction in BI, in a simplified and propositional form, 3

�� � � �

��� � �
�

reveals the relationship between the fragment of BI with which we shall be concerned and
linear logic. We return to this point in the sequel.

BI possesses two very natural semantics. The first of these, a categorical semantics of
proofs, is given, at the propositional level, by doubly closed categories (DCCs). A DCC is
a category equipped with two monoidal closed structures; it is called cartesian if one of the
closed structures is cartesian and the other symmetric monoidal. So, categorically, the ‘;’ is
modelled by a cartesian product and the ‘,’ is modelled by a symmetrical monoidal product
in the same category.

A rich class of models of BI can be obtained by using a construction due to Day [8], who
shows that any monoidal category 
 induces a monoidal closed structure on Set �

	�

. This,
combined with the cartesian structure on Set�

	�

, yields a host of concrete models for BI. The
construction follows. The unit � of the monoidal structure is 
��� � �. The tensor product is
written using co-ends,

�"�#�$ �

�
��
"� �#% � 
�$� � � % ��

and the linear implication is written using an end,

�"� #�� �

�
�

Set�"%� #�� � % �� �� Set�
	�

�"���� #�� �����

(An end and its dual can be seen, roughly speaking, as quantifiers. The categorical definition
of an end is as a limit obtained from certain bifunctors [20].)

The second semantics of BI is a Kripke-style semantics of formulae, which combines
Kripke’s semantics of intuitionistic logic [19] and Urquhart’s semantics of relevant logic
[42]. These can be understood to be given, respectively, in Set� , where � is a poset, and in
Set�, where � is a commutative monoid. A semantics of BI can be obtained by working

2For technical reasons, it is necessary to associate the marker � with ‘intuitionistic’ variables.
3This rule is explained in general in the sequel.
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in Set�
	�

, where, for simplicity, we can take 
 �� �� to be a partially-ordered commutative
monoid. Given such a monoid� � ��� �� ����, the second semantics of BI can be defined
via a forcing relation � �� � , for a world � and a formula � . All propositions must satisfy
the familiar Kripke monotonicity property from intuitionistic logic. The clauses for the linear
and intuitionistic implication are then given as follows:

1. � �� �� � if and only if, for all � � � , if � �� � then � � � �� �;
2. � �� � � � if and only if, for all � � � , if � � � and � �� �, then � �� �.

If we consider a predicate bunched logic, in which the variables in the antecedent have a
bunched structure too, then we can form two kinds of quantifiers, a linear one � 
�� and an
intuitionistic one �. The Kripke-style semantics for predicate BI can be given by extending
the above ideas, and are discussed in [24, 36]. Although presheaf DCCs are adequate for
such a semantics of predicate BI, they do not yield a good interpretation of proofs. For this,
we must move to an indexed or fibred setting in which the predicate BI judgement ���� � �
is interpreted by interpreting the propositional judgement � � � over the interpretation of the
variable context � .4

The relationship between BI and the ��-calculus is that the ��-calculus is the dependent
type theory which generalizes, in the presence of a certain notion of dereliction, both impli-
cations, � and �, and both quantifiers, � and �
��. It is, thus, in a propositions-as-types
correspondence with a variant of the ����������
���-fragment of BI with Dereliction. It
must be stressed, however, that the development of a dependently-typed �-calculus in proper
correspondence with BI remains outstanding (though see the discussion in [37]).

The purpose of this paper is to study the categorical semantics of the ��-calculus. This is
given here by Kripke resource models, which are monoid-indexed sets of functorial Kripke
models, ���
�� � �
��� Cat�� � � � 
�. The indexing element � � 
 can be seen as the
resource able to realize the functorial Kripke structure it indexes. We work with indexed
category theory, rather than, for example, Cartmell’s contextual categories [5], as the indexed
approach allows us to separate certain conceptual issues and, hence, allows us to recognize
the extra structure needed for studying the model theory of structurally weaker logics and
type theories than the intuitionistic ones. We will see this later, in Section 3.2, when we
motivate the structure needed to model the ��-calculus.

Kripke resource models generalize, as we might expect, the functorial Kripke models of the
��-calculus [35]. These consist of a functor �
�� � �
 ��� Cat��, where � is a Kripke world
structure, 
 is a category with a ��� �� cartesian monoidal structure on it and �
 ��� Cat� is a
strict indexed category. The intuitionistic dependent function space � is modelled as right
adjoint to the weakening, or projection, functor � �
��& ��'� � ��& ��' �"�.

In the ��-calculus, we have two kinds of context extension operators, so we require 
 to
have two kinds of monoidal structure on it, ��� �� and ��� ��. The intuitionistic dependent
function space � can be modelled, as usual, using the right adjoint to projection. However,
there is no similar projection functor corresponding to �. For this, we must require the exis-
tence of the natural isomorphism ����
�
� �� 	��	�	��� #� �� ����
�� 	��	�����
" �#�,
where '�" is defined in the ������-indexed model. This is sufficient to define the function
space.

4The two semantics we describe are, of course, formally instances of the same abstract construction. However,
we suggest that such a view is conceptually misleading. The forcing semantics is not required to model the typing
assertion associating a proof-object to a logical consequence and so admits more immediately a very wide range of
conceptual interpretations: a great deal is possible in the category of sets.
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While the ��-calculus has familiar soundness and, via a term model, completeness theo-
rems, it is important to ask if there is a natural class of models. For the ��-calculus, for in-
stance, the most intuitive concrete model is that of families of sets, ���. This can be viewed
as an indexed category ���
�(����� Cat�. The base, (��, is a small set-theoretic category
whose objects are sets and morphisms are set-theoretic functions. For each ' � �)������,
����'� � �* � #��� � � � '�. The fibre is just a discrete category whose objects
are the elements of #���. If � � ����(� '�, then ������ just re-indexes the set over
' to one over (. As there is little structure required in the fibre, the description of fami-
lies of sets can also be given sheaf-theoretically, as ���
�(����� Set�, each ����'� being
considered as a discrete category. Using Day’s construction, we can show how to obtain a
corresponding class of set-theoretic models, parameterized on a small monoidal category, for
the ��-calculus. That is, we describe a families of sets model in �����
�
� �(����� Set��,
where 
 is some small monoidal category. The definition of � in ����� is given as usual,
but the definition of � uses a restriction of Day’s tensor product [8].

The rest of this paper is organized as follows: in Section 2, we present the type theory in
both syntactic and algebraic forms. We also make a brief remark regarding the propositions-
as-types correspondence between BI with Dereliction and the type theory; in Section 3, we
describe the Kripke resource models of the type theory; Section 5 concludes the paper by
constructing a class of Kripke resource models from the category of families of sets.

This paper, the content of which was sketched in [15], continues the work first reported in
Ishtiaq and Pym [17] (see also [16]). The reader is referred to that paper for a full syntactic
study of the type theory, together with its use as a language in the logical framework RLF.
The ideas presented there were first considered by one of us in [33].

2 The ��-calculus

In this section, we give a syntactic presentation of the type theory, which we henceforth refer
to as System �. We briefly comment on the propositions-as-types correspondence with a
fragment of predicate BI. We also give a algebraic presentation of the type theory, in order to
prepare for the completeness argument later.

2.1 A syntactic presentation

The ��-calculus is a first-order dependent type theory with entities at three levels: objects,
types and families of types, and kinds. Objects (denoted by � ,+ ) are classified by types.
Types and families of types (denoted by ", #) are used to represent syntactic classes and
judgement forms. Families of types may be thought of as functions which map objects to
types. Kinds (denoted by ,) classify families. In particular, there is a kind ���� which
classifies the types. We will use - , . to denote any of the entities.

The abstract syntax of the entities is specified by the following grammar:

����
 � ��� ���� � ���� �� � ���� ��
���	
 � ��� � � ���� �� � � ��� �� � ���� �� � ���� �� � �� � ���
���	
�
 � ��� 
 � � � ���� �� � ���� �� ��� � ����� � ��� � ��� �

We write ��" to range over both linear (�
") and intuitionistic (��") variable declarations.
The � and� bind the variable �. The object � �
" �� is an inhabitant of the linear dependent
function type ��
" �#. The object � ��" �� is an inhabitant of the type ���" �#, which



1068 Kripke Resource Models of a Dependently-typed, Bunched �-calculus

can also be written as ��
" �#.5 The notion of linear free and bound variables (LFV, LBV)
and substitution may be defined accordingly. When � is not free in # we write " � # and
" � # for ��
" �# and ���" �#, respectively.

We can define the notion of linear occurrence by extending the general idea of occurrence
for the �-calculus [3], though we note that other definitions may be possible.

DEFINITION 2.1 (Linear occurrence in - )
1. � linearly occurs in �;

2. if � linearly occurs in - or . (or both), then � linearly occurs in � *�- �. , in � *�- �. ,
and in -. , where � 	� *;

3. if � linearly occurs in both � and + , then � linearly occurs in ��� +�;

4. if � linearly occurs in � , then � linearly occurs in / ����;

5. if � linearly occurs in both " and #, then � linearly occurs in "�#.

The definition is extended to an inhabited type and kind.

DEFINITION 2.2 (Linear occurrence in - 
. )
A variable � linearly occurs in the expression - 
. if it linearly occurs in - , in . , or in both.

We remark that the above definitions are not ‘linear’ in Girard’s sense [4, 2]. However, they
seem quite natural in the bunches setting. O’Hearn and Pym, for instance, have examples of
BI terms — the ��-calculus is in propositions-as-types correspondence with a non-trivial
fragment of BI — where linear variables appear more than once or not at all [24].

EXAMPLE 2.3
The linear variable � occurs in the terms 0�
#� (assuming 0 
 ��
" �#�), ��
1 (assuming
� 
�� 1) and � *
(� �* 
 (�� (� (assuming (
"� ����).

In the sequel, we will often refer informally to the concept of a linearity constraint. Es-
sentially this means that all linear variables declared in the context are used: a production-
consumption contract. But we generalize this, so that the judgement �
"� *
0� �� *
0� in
which the linear � is consumed by the (type of) * declared after it and the * itself is consumed
in the succedent, is a valid one.

In the ��-calculus signatures are used to keep track of the types and kinds assigned to con-
stants. Contexts are used to keep track of the types, both linear and intuitionistic, assigned to
variables. The abstract syntax for signatures and contexts is given by the following grammar:

 ������!	
 � ��� �� � �� ��� � �� 
��
"���	��
 � ��� �� � �� ��� � �� ����

The ��-calculus is a formal system for deriving the following judgements:

� � ��� � is a valid signature
�� � ��	
��
 � is a valid context in �
� �� � ��	
 � is a valid kind in � and �
� �� ��� � has a kind � in � and �
� �� � �� � has a type � in � and ��

5Indeed, we could take 	 as a primitive, with � and 	 being connected not by linear logic’s Dereliction, which
uses � to convert an extension, �� ���, of a context to an extension �
���, but rather by a version of BI’s dereliction
rule, which allows the inference of an intuitionistic extension, �
���, from a linear extension, �� ���. We return to
this point in Section 2.7.
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We write � �� - 
. for either of � �� "
, or � �� � 
", and � �� � for � �� , ����

or � �� - 
. .
The definition of the type theory depends crucially on several notions to do with the join-

ing and maintenance of contexts; these are the notions of context joining, variable sharing
and multiple occurrences. In joining together two contexts to form a third, the order of dec-
larations and type of variables (linear versus intuitionistic) must be respected. Following a
joining of contexts, certain occurrences of linear variables — those that are shared by a func-
tion and its argument — are identified with one another. This sharing is implemented by the
2 function and is crucial in allowing the formation of sufficiently complex types. A techni-
cal prerequisite to sharing is the notion of multiple occurrences, which allows us to declare
contexts of the form �
"� �
", i.e. contexts in which repeated but distinct declarations of
the same variable are possible. These notions will be explicated at appropriate points in this
section.

The rules for deriving judgements in the type theory are given in Tables 1 and 2. These are
conveniently separated into a linear and an intuitionistic set, the latter directly related to the
intuitionistic ��-calculus.

TABLE 1. ��-calculus

Valid Signatures

��	

 �� ���


 � ��� 
� � ���� � 
� �
���
	


 �
 �
� ���


 � ��� 
� �����	 � 
� �
���
	


 �
 �
� ���

Valid Contexts

 � ���

��	

� �� 
���	
�


� � 
���	
� � 
� �����	 ��� ���� (� 
� �����	 or ��� � �)
���	


� �
 ��� 
���	
�


� � 
���	
� � 
� �����	 ��� ���� (� 
� �����	 or ��� � �)
���
	


� �
 �
� 
���	
�

Valid Kinds

� � 
���	
�

����	
� 
� ���	 ����

�
 ��� 
� � ����

�����	
� 
� ���� �� ����

� 
� �����	 � 
� ������ ���� ���� � � ���������	 � �����		
�����	

� 
� �� ������

�
 �
� 
� � ����

���
�	
� 
� ��
� �� ����

One of the main points to note about the context formation rules is that a context can be
extended with either linear or intuitionistic declarations. There is no zone or ‘stoup’ sepa-
rating the linear from the intuitionistic parts of the context. The context formation rules also
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TABLE 2. ��-calculus (continued)

Valid Families of Types


�
� 
���	
� �
� � �
���	


� 
� ���

�
 ��� 
� �����	
�����	

� 
� � ��� �� � ���	

� 
� �����	 � 
� �����	 ���� �� �� � � ���������	 � �����		
�����	

� 
� �� �����	

�
 �
� 
� �����	
���
�	

� 
� � �
� �� � ���	

�
 ��� 
� ���
�����	

� 
� � ��� �� � ���� ��

� 
� � � � ��� �� � 
� � �� ���� ���� � � ������
�	
����	

� 
� �� � ��� ��

�
 �
� 
� ���
����
�	

� 
� � �
� �� � ��
� ��

� 
� � � � �
� �� 
� 
� � �� ��� �� 
��
���
�	

� 
� �� � ��� ��

� 
� �����	 � 
� �����	
����	

� 
� �������	

� 
� ��� � 
� �
�
���� � � �

�
��� ����

�� �	
� 
� ���

�

Valid Objects


�
� 
���	
� �
� � �
�!�	


� 
� ���

� 
� �����	
�!" ��	

�
 ��� 
� ���

� 
� �����	
�!" ��
	

�
 �
� 
� ���

�
 ��� 
� ! ��
�!���	

� 
� � ��� �! � � ��� ��

� 
� ! � ���� �� � 
� � �� ���� �� �� � � ������
�	
�!��	

� 
� !� � ��� ��

�
 �
� 
� ! ��
�!��
�	

� 
� � �
� �! � � �
� ��

� 
� ! � � �
� �� 
� 
� � �� ��� �� 
��
�!�
�	

� 
� !� � ��� ��

� 
� ! �� � 
� � ��
�!��	

� 
� �!
�� � ���

� 
� ! � �����

�!���	 �� � ��
 ��	
� 
� #�! � ��

� 
� ! �� � 
� ������	 � � �� ��� ����
�! �	

� 
� ! ���
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introduce two particular characteristics of the type theory. The first one is that of joining
the premiss contexts for the multiplicative rules. The join must respect the ordering of the
premiss contexts and the concept of linear versus exponential variables. A method to join �
and � into � — denoted by ��� ���� — is defined in Section 2.2.

In order to motivate the second characteristic of the type theory, consider the following
example of a non-derivation:6

EXAMPLE 2.4
Let "�����, 0�"� ���� � 	 and note that the argument type, 0�, is a dependent one; the
linear � is free in it.

�
�
�

��� 
� ������	

���
 $��� 
� $���

��� 
� � $��� �$ � � $��� ���

�
�
�

��� 
� ������	

���
 %��� 
� %���
�

���
 ���
 %��� 
� �� $��� �$	% � ��

The problem here is that an excess of linear �s now appear in the combined context after
the application step. Our solution is to recognize the �s in each premiss context as distinct
occurrences of the same variable, the one occurring in the argument type 0�. The � is said
to be shared between the function and its argument. This sharing is implemented via the 2
function, which is defined in Section 2.4. Sharing necessitates a binding strategy for multiple
occurrences: this is described in Section 2.3. One implication of this solution is that repeated
declarations of the same variable are allowed in contexts. For this reason, the usual side-
condition of � 3� 1����� is absent from the rules for valid contexts, though of course we
don’t allow the same variable to inhabit two distinct types.

There are several interesting object-level rules. The two variable declaration rules, ��. ���
and ��. ����, declare linear and intuitionistic variables, respectively. These rules should be
not seen as weakening in the context � as, by induction, the variables declared in � are ‘used’
in the type ". The other interesting set of rules are those for the two function spaces. Con-
sider the introduction rules first. If the context has been extended linearly, then ������
introduces the linear dependent function space ��
" �#. Otherwise, if the context has been
extended intuitionistically, then ������� introduces the intuitionistic dependent function
space ���" �#. In the elimination rules, the side-conditions realize a sharing-sensitive join
of the premiss contexts. For the ������ rule, the context for the argument + 
" is an entirely
intuitionistic one (��), which allows the function to use + as many times as it likes.

2.2 Context joining

The method of joining two contexts is a ternary relation ��� ����, to be read as ‘the contexts
� and � are joined to form the context �’. Or, for proof-search: ‘the context � is split into
the contexts � and �’.

The first rule for defining ��� ���� states that an empty context can be formed by joining
together two empty contexts. The second and third rules comply with the linearity constraint,
and imply that the linear variables in � are exactly those of � and �. The last rule takes

6Note that the fact that � #�
� �
� is just 
� � 
� is of no importance here, the dependency on � being the
point of interest.
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account of the intuitionistic behaviour of exponential variables. In search, the intuitionistic
variable ��" would be sent both ways when the context is split. The rules are given in Table 3.

TABLE 3. Context joining

�JOIN	
���� ��� ���

��� ����
�JOIN-L	

��
 ���� �
 ������

��� ����
�JOIN-R	

��
 ���� ���
 ����

��� ����
�JOIN-!	

��
 �
�� �
 �
���
 �
��

Further, the context joining relation must respect the ordering of the contexts and the linearity
constraint as defined by the binding strategy. We remark that if we were also studying the
distribution laws for relevant contexts, then the context joining relation would need to take
regard of these context equalities.

2.3 Multiple occurrences

Consider the multiple occurrences idea from a proposition-as-types reading. Then �
"� �
"
can be understood as two uses of the same proof of a proposition, as opposed to �
"� *
",
which can be seen as two distinct proofs of the proposition. Though this idea can be seen, in
the presence of the binding strategy that we are about to describe, as an internalization of 4-
conversion, it allows us a degree of freedom, that at the structural level of terms (as opposed
to types), which is useful in dealing with variable sharing (Section 2.4).

The ‘leftmost free occurrence of � in - ’ is the linear occurrence of � in the leftmost sub-
term of - . The important cases are those for abstraction and application, which are defined
as follows:

$���� ��� �% � �

�
$����� � � &'% ���
$���% � otherwise.

�
�� � distinct

$������� �% � � $���� #�� �% �#(��� # new

$���
�� � $����� ��
 distinct
$������ � 	�


$���%�� �

�
$���% � � � &'% �% �
$����� otherwise

We define the leftmost occurrence of �
" in a context � as the first declaration of �
" in
�. Similarly, the rightmost occurrence of �
" in � is the last such declaration. The binding
strategy now formalizes the concept of linearity constraint:

DEFINITION 2.5 (Leftmost binding)
Assume �� �
"�� �� - 
. and that �
" is the rightmost occurrence of � in the context.
Then � binds:

1. the first leftmost occurrence of � in ��
���, if there is such a declaration;
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2. the unbound leftmost linear occurrences of � in - 
. .

There is no linearity constraint for intuitionistic variables: the rightmost occurrence of ��"
in the context binds all the unbound �s used in the type of a declaration in � and all the
occurrences of � in - 
. .

The rules for deriving judgements are now read according to the strategy in place. For ex-
ample, in the ������ rule, the ���� binds the leftmost occurrence of � in ��#�. Similarly,
in the (admissible) cut rule, the term + 
" cuts with the leftmost occurrence of �
" in the
context�� �
"���. In the corresponding intuitionistic rules, the ������ binds all occurrences
of � in ��#� and + 
" cuts all occurrences of ��" in the context �� ��"�� �.

In the sequel, we use the leftmost binding and cutting strategy as discussed above. We
remark that there is a general �� strategy, that of binding the �th variable from the left and
cutting the �th variable from the left.

EXAMPLE 2.6
If )� 0 
 "� ���� � 	 and � � ��
"�)�� 0�� ���� � 	, then

�
"� *
)�� �
"� 5
0� �� ��*5
�����

We return to this example and give a proof of the typing in Example 2.9.

Though we can construct such terms, the main motivation for multiple occurrences is to
introduce the notion of sharing.

2.4 Variable sharing

Variable sharing is a central notion which allows linear dependency to be set up. In fact, this
notion is already implicit in Definition 2.1 of linear occurrence. Sharing occurs when linear
variables are needed for the well-formedness of the premiss types but not necessarily for the
well-formedness of the conclusion type. This requirement is regulated by a function 2.

We define 2 by considering the situation when either of the two contexts � or � are of the
form � � � � �
" or � � � � �
"� *
#�. The only case when the two declarations of �
" are not
identified with each other is when both � and � are of the form � � � � �
"� *
#�.

DEFINITION 2.7
The function 2 is defined for the binary, multiplicative �"���, ����� and �(��� rules

� 
� & � � $�' �" � 
� � �' ���� ���� � � ������
�	
����	
 �!��	

� 
� &� � " �� ��

����� ��	
�
�
�

�
 $�'
�� 
� & �" � 
� � �' ���� �� �
���� ��� � � ������
�	
(Cut).

� 
� �& �" 	�� $�

For each �
" occurring in both � and �, construct from right to left as follows: (Formally,
2����� is defined recursively on the structure of � and �, read from right to left. We adopt
the following informal notation for ease of expression.)
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)����� � 	
 if $����� � $����� � �

)����� �

������
�����

	��� � $����� � $����� � either ��� �*	!	 �
 �� ������
�� �*	 !��*� �+ ��� �� �

or ���� �*	!	 �
 �� ������
�� �*	 !��*� �+ ��� ���

or both ��� ��� ����


��*	!,�
	�

The second clause is needed to form a consistent type theory which allows the formation
of sufficiently complex dependent types. By this, we mean types such as �� �
"� � � ����

"����� � � � � ����� � " in which the abstracting types depend upon previously abstracted vari-
ables. In binary rules, it can be that some variables must occur, in order to establish the
well-formedness of types in each premiss, in the contexts of both premisses, and must occur
only once in order to establish the well-formedness of types in the conclusion. However, it is
possible for other variables occurring in both premisses to play a role in the logical structure
of the proof; these variables must be duplicated in the conclusion. These requirements are
regulated by 2.

We should emphasize that 2 relies on the formation of a set, rather than a multiset, of
variables. It might be that alternative definitions for variable sharing are possible.

In the absence of sharing of variables, when the first clause only applies, we have a linear
dependent function space but without the dependency of the abstracting " �s on the previously
abstracted variables.

Given the definition, we can now consider the following example, which corrects Exam-
ple 2.4:

EXAMPLE 2.8
Suppose "������ 0�"� ���� � 	. Then we construct the following:


� ���� ���	


� �����	

��� 
� ���
�

��� 
� ������	

���
 $��� 
� $���

��� 
� � $��� �$ � � $��� ���


� ���� ���	


� �����	

��� 
� ���
�

��� 
� ������	

���
 %��� 
� %���
���

���
 %��� 
� �� $��� �$	% � ��

The � denotes the context join to get �
". The �� side-condition is more interesting. Firstly,
the premiss contexts are joined together to get �
"� �
"� *
0�. Then, 2 removes the extra
occurrence of �
" and so restores the linearity constraint.

The function 2 is not required, i.e. its use is vacuous, when certain restrictions of the ��-
calculus type theory are considered. For instance, if we restrict type-formation to be entirely
intuitionistic so that type judgements are of the form �� �� "
����, then we recover the
�������-fragment of Cervesato and Pfenning’s ����� type theory [6].

We conclude this section by completing Example 2.6, of a linear dependent type formed
using the notions of multiple occurrences and variable sharing. 7

7There is an erroneous claim in [15, Section 2.2], corrected in [16]. The term 
�� is indeed a valid one but it
does not require mutliple occurences of �. Example 2.9, given here, is correct.
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EXAMPLE 2.9
If )� 0 
 " � ���� � 	 and � � �� 
" � )� � 0� � ���� � 	, then we can construct the
following proof:


� � � � ��� �(�� ��� ���	 ��� 
� ���

��� 
� ���(�� ��� ���	

��� 
� (�����	

���
 %�(� 
� %�(�

���
 %�(� 
� $���� ���	

��� 
� ������	

���
 $��� 
� $���
�

���
 %�(�
 ���
 $��� 
� ��%$����	

The last two applications have a non-trivial 2 action which forces one of the �
"s to be
shared. It can be checked that all the constants used in the proof are well-typed.

2.5 Definitional equality

The definitional equality relation that we consider here is the 67-conversion of terms at
all three levels, subject to the binding strategy. The parallel nested reduction form of 67-
reduction is written as �. The transitive closure of � is denoted by ��. The definitional
equality relation, �, between terms at each respective level is defined to be the symmetric
and transitive closure of�. The one-step reduction relation is written as� �.

The relation, subject to the binding strategy, is given by the rules in Table 4. We include
just the rules for 6-reduction; the rules for 7-reduction follow the usual pattern [10, 7, 39],
e.g.

� �� � ��" ��� 
 # � �� � 
 ( � 	� �����

� �� � ��" ��� � �
�

This concludes the syntactic presentation of the type theory. We refer to this presentation
as system�. We will write� proves � �� � 
", etc. to mean that the assertion � �� � 
",
etc. is derivable in the system �. A term is said to be well-typed or valid in a signature and
context if it can be shown to either be a kind, have a kind, or have a type in that signature and
context. We speak similarly of valid contexts relative to a signature and of valid signatures.

2.6 Basic properties

A summary of the major meta-theorems pertaining to system � and its reduction properties
are given by the following theorem:

THEOREM 2.10 (Basic metatheory of the ��-calculus)
1. (Church–Rosser) All well-typed terms are Church–Rosser.
2. (Structural Admissibilities) Exchange, weakening, dereliction, contraction and (two forms

of) cut are admissible.
3. (Unicity of Types and Kinds) If � proves � �� - 
. and � proves � �� - 
. �, then

. � . �.
4. (Extended Unicity of Domains) If� proves � ��" �- inhabits ���# �. , then " � #.
5. (Subject Reduction) If� proves � �� - 
. and - �� - �, then� proves � �� - �
. .
6. (Strong Normalization) If� proves � �� - 
. , then - is strongly normalizing.
7. (Predicativity) If� proves � �� � 
", then �������� (the type erasure of � 
") can be

typed in the Curry type-assignment system.
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TABLE 4. Parallel nested reduction

�� �)*�	
& � &

�� �� ! � ! �

�� !�	
� ��� �! � ����� �! �

�� �
�

� � �
�

�� ��	
� ��� �� � � ���

�
��

�

! � ! � � � � �

�� !���	
!� � ! �� �

�� �
�

� � �
�

�� ��	
� ��� �� � � ���

�
��

�

! � !
�

� � �
�

�� !+	
�� ��� �!	� � !

�
��

�
 ��

�� �� � � ��

�� ��	
� ��� �� � � ���� ���

! � ! � � � � �

�� !�	
�!
�� � �! �
 � ��

�� �
�

! � !
�

�� ����	
�! � �

�
!

�

! � ! �

�� !#	
#�! � #�!

�

� � �� � � � �

�� �+	
�� ��� ��	� � ���� � ��

! � ! �

�� !#�	
#��!
�� � ! �

�� �� � � ��

�� ��	
��� � �����

� � �
�

�� !#�	
#��!
�� � �

�

8. (Decidability) All assertions of the ��-calculus are decidable.

The proof of this theorem, presented in [17], is obtained by adapting the techniques of
Harper et al. [10] to this setting. The proof of the Church–Rosser property is shown by
proving confluence for the one-step reduction relation and then inducting on the number of
reduction steps. The proof of strong normalization is by giving a ‘dependency- and linearity-
less’ translation of the ��-calculus into the Curry-typable untyped �-calculus. The transla-
tion is faithful and consistent and allows us to ‘reflect’ the strong normalization property of
the �-calculus back to the ��-calculus.

We use this technique, of giving a translation to prove a property, to obtain Church–Rosser
for 7-reduction. This was the main difficulty in Harper et al.’s metatheoretic study of the ��-
calculus. One solution, due to Salvesen, is to use van Daalen’s technique of label-conversion
[39]. We exploit that result by giving a faithful and consistent translation of the ��-calculus
into the ��-calculus and appealing to the reduction properties of the latter.

2.7 The propositions-as-types correspondence

The ��-calculus type theory is motivated by a consideration, inter alia, of linear logic. How-
ever, it is structurally also very close to BI, the logic of bunched implications. In BI, we
have two kinds of function spaces, the linear one � and the intuitionistic one �. Corre-
spondingly, there are two kinds of quantifiers, the linear one � 
�� and the intuitionistic one
�. Proof-theoretically, these arise because of extra structure in the context. There are two
distinct context-formation operators, the ‘;’, which admits the structural rules of weaken-
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ing and contraction, and the ‘,’, which doesn’t. We can add the rule of Dereliction, the full
propositional form being

������� � �

������� � �
�

to BI; this allows consequences such as � � � � � � � to be provable. Neither BI’s nor
the ��-calculus’ rule for Dereliction relies on the presence of a general � modality.

It follows that the ��-calculus stands in propositions-as-types with the ���������
�
���-fragment of BI with the rule of Dereliction, the full predicate form being

���%� % ���������� � �
' �

���% � �% ������� ���� � �

where each �$ denotes $ with each �
" replaced by ��" and each ‘,’ replaced by ‘;’, but
without the unit operation taking a bunch ���� to ������. 8 This operation changes the
status of � within a derivation, so that a variable which starts out in additive combination
with its neighbours can bind multiplicatively. No corresponding operation is possible in the
��-calculus, so that this proposition-as-types correspondence does not properly generalize
that for propositional BI and its associated simply-typed �-calculus, 4�. The addition of
Dereliction represents the extent to which the ��-calculus corresponds to linear logic: the
basic context-extension operation in �� adds a type to the right-hand end of a context, �� �
"
or�� ��", so that, in the given fragment, the relationship between these two cases may be seen
either as an instance of BI’s Dereliction or as an instance of linear logic’s Dereliction. 9

The basic idea for the correspondence between BI and the ��-calculus is to consider ‘;’ as
intuitionistic extension and ‘,’ as linear extension. This is implemented by giving a translation
of BI contexts which relies, to a certain extent, on the notion of dereliction. The idea of view-
ing the BI context joining connectives as context extension operators necessarily restricts the
correspondence to a fragment, though a non-trivial one, of BI. The correspondence between
the connectives is given by the following table:

BI ��

� &
� �
� �

� ����
�
�� �� 
 �

In fact, as mentioned in Section 2.1, we could take the type-constructor � as a primitive,
with the relationship between � and � being given by BI’s dereliction rule.

One view of this correspondence is, then, that the RLF meta-logic uses this fragment of
BI, just as the LF meta-logic uses the �����-fragment of Intuitionistic Logic. A detailed
account of the correspondence is given in [13, 16].

It remains a challenging and open problem to give a systematic analysis of the relationship
between substructural logics and dependent type theories. In particular, it remains to formu-

8Though note that, for the purposes of completeness later, we will take both units in the type theory; in our
present context, this is a minor matter.

9This observation suggests a way to have both additive and multiplicative quantifiers in linear logic. The basic
quantifier would be the multiplicative, or linear, one and the additive, or intuitionistic, one would be recovered via
the exponential. See [37] for more discussion of this point.
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late a dependent type theory in correspondence to a proper fragment of BI, i.e. in which the
structural rules are unaltered.

2.8 An algebraic presentation

In preparation for our presentation of a categorical semantics of the ��-calculus in general
and, in particular, for the completeness argument later, we give an algebraic presentation of
the ��-calculus type theory. The idea is to consider provably well-formed syntactic objects
modulo definitional equality. We let �- � denote the 467-equivalence class of expressions of
the ��-calculus, though we will tend to omit the � � � brackets where no confusion arises.

DEFINITION 2.11
Let 	 be a signature. The base category 
�	� of contexts and realizations is defined as
follows:

� Objects: contexts � such that � proves �� � �	�
��
.

� Arrows: realizations �
�!�
���
!��
�� � such that � proves � �� ���
"�����3�� �

���
���,

where � � ���"�� � � � � ���"�.

– Identities are ���"�� � � � � ���"�
���
���
���
�� ���"�� � � � � ���"�. We will write the

identity arrow on � as ��.

– Composition is given by substitution. If � � �
�!�
���
!��
�� � and � � �

���
���
���
�� �,

then � � � � �
����!� %� �

�
���


���
���!� %� �
�
���

�
�� �.

The following proposition follows easily from the definition:

PROPOSITION 2.12

�	� is a category.

PROOF. We must check that �� is an identity morphism and that composition is associative.
We omit the details.

In the judgements � �� "
���� and � �� � 
", the context �, which is an object of 
�	�
according to Definition 2.11, can be seen as an index for the type " and the term � . That is,
� and " depend on the variables declared in �. This can be seen in the internal logic too,
where in the judgement ���� � �, � is an index for �. We formalize this for the algebraic
presentation of the syntax by taking 
�	� to be the base for the following.

DEFINITION 2.13
We inductively define a strict indexed category ��	� over the base category 
�	�

��	� 
 
�	��� � Cat�

where Cat is the category of small categories and functors, as follows:

� For each � in 
�	�, the category ��	���� is defined as follows:
– objects: Types " such that� proves � �� "
����;
– morphisms: "

!
� # where the object � is such that �� �
"

!
� *
# in 
�	�. By

the classifying category theorem which follows, this amounts to the assertion� proves
�� �
" �� � 
#. Composition is given by substitution.
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� For each � 
 �� � in 
�	�, ��	���� is a functor � � 
 ��	����� ��	���� given by

���"�
���
� "�� � and �����

���
� � �� �.

We remark that each 
�	���� is a category. Note that the identity arrow "
�
� " over � is

given by the term � �
" ��, corresponding to the definition of morphisms above. To see that
this construction is correct, consider that the axiom sequent is of the form �� �
" �� �
",
with the side-condition that � �� "
����, thereby using the variables in �.

The relation between the type theory and the category defined by the two definitions above
is given by the following theorem, which states that the term category defines no more and
no less than what can be proved in �.

THEOREM 2.14 (Classifying category)
Let 	 be a signature and let �, � and " be in 467-normal form.

� � proves �� � �	�
��
 if and only if � is an object of 
�	�;
� � proves � �� "
���� if and only if " is an object of ��	����;

� let ��� � � � � �� be objects. � proves �� �� ��
#����3�� �
���
��� if and only if

�
�!�
���
!��
�� *��#�� � � � � *��#� is an arrow of 
�	�;

� � proves � �� � 
" if and only if ��
!
� " is an arrow of ��	����.

PROOF. By induction: in the forward direction on the structure of the proofs in�; and in the
backward direction on the complexity of expressions. The arguments are straightforward and
we omit the details.

3 Kripke resource models of the ��-calculus

3.1 Kripke resource ��-structure

We motivate the mathematical structure which is used to model the ��-calculus by consider-
ing, informally, models of the internal logic. In fact, the structure we motivate will be quite
modular; a sub-structure will model the intuitionistic �����-fragment of the ��-calculus
(i.e. the ��-calculus).

The key issue in the syntax concerns the co-existing linear and intuitionistic function spaces
and quantifiers. This distinction can be explained by reference to a resource semantics. The
notion of resource, such as time and space, is a primitive one in informatics. Essential aspects
of a resource include our ability to identify elements (including the null element) of the
resource and their combinations. Thus we work with a resource monoid �
��� ��. We can
also imagine a notion of comparison � between resources, indicating when one resource is
better than another, in that it may prove more propositions. Similar ideas can be seen, post
hoc, in the relevant logic literature [42].

A resource semantics elegantly explains the difference between the linear and intuitionistic
connectives in that the action, or computation, of the linear connectives can be seen to con-
sume resources. We consider this, informally, for the internal logic judgement ���� � �.
Let � � ��� �� ���� be a Kripke resource monoid. A simplified version of the forcing
relation for the two implications is defined as follows:

1. � �� �� � if and only if, for all � � � ; if � �� � then � � � �� �;
2. � �� � � � if and only if, for all � � � , if � � � and � �� �, then � �� �.
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A similar pair of clauses defines the forcing relation for the two BI quantifiers. Here
'
��� � Set is a domain of individuals and � � ��� ��� is an environment appropriate to the
bunch of variables � at world �, where ��� �� is the interpretation of the bunch of variables �

in Set�
	�

:

1. ����� � �� ���� if and only if, for all � � � and all 1 � '�,

�� ������� ���� � ���� 1�� � �� � �

2. ����� � �� �
����� if and only if, for all � and all 1 � '�,

��� ����� 1�� � � � �� � �

Here ����� is cartesian pairing and ����� is the pairing operation defined by Day’s tensor
product construction in Set�

	�

. The resource semantics can be seen to combine Kripke’s
semantics for intuitionistic logic and Urquhart’s semantics for relevant logic [19, 42]. Further
details are in [24, 36].

Suppose we have a category � where the propositions will be interpreted. Then we will
index � in two ways for the purposes of interpreting the type theory. Firstly, we index it by
a Kripke world structure� . This is to let the functor category �� � � � have enough strength
to model the �����-fragment of the internal logic and so correspond to Kripke-style models
for intuitionistic logic. Secondly, we index �� � � � by a resource monoid 
. Thus, we obtain

-indexed sets of Kripke functors ���
�� � � � � � � 
�. We remark that the separation of
worlds from resources considered in this structure emphasizes a sort of ‘phase shift’ [9, 12].
We briefly reconsider this choice in Section 5.

We now consider how to model the propositions and so explicate the structure of � . The
basic judgement of the internal logic is ���� � �, that � is a proposition in the context, �,
of propositions over the context, � , of variables. One reading of this judgement, and perhaps
the most natural, is to see � as an index for the propositional judgement � � � :

� � � �

This reading can be extended to the type theory, where, in the basic judgement� � � � 
",
� can be seen as an index for � 
" or that � 
" depends on � for its meaning. Thus we are
led to using the technology of indexed category theory [25]. More specifically, in the case of

the type theory, the judgement � �� � 
" is modelled as the arrow �
��! ��
� ��"�� in the fibre

over ����� in the strict indexed category � 

 �� � Cat.
We remark that this is not the only technique for modelling a typing judgement; Cartmell

[5], Pitts [26] and several other authors use a more ‘one-dimensional’ structure which relies
on the properties of certain classes of maps to model the intuitionistic fragment of the ��-
calculus. These are formally equivalent to the indexed approach but the latter is appealing
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for one main reason: it provides a technical separation of conceptually separate issues. For
instance, at a logical level, the base and fibres deal, respectively, with terms and propositions.
At the cost of less bureaucracy, these issues would be muddled in the non-indexed approach.

We need the base category 
 to account for the structural features of the type theory and its
internal logic. Recall that, proof-theoretically, the two function spaces and quantifiers arise
because of extra structure, viz. the two types of context extension operators, in the context.
To model the context, we work with a category with two kinds of structure on it.

DEFINITION 3.1 (Doubly monoidal category)
A doubly monoidal category is a category 
 equipped with two monoidal structures, ��� ��
and ��� ��. 
 is called cartesian doubly monoidal if � is cartesian. We will use � to range
over both multiplications.

There are a couple of comments we need to make about the monoidal structure on 
.
Firstly, there is no requirement that the bifunctors � and � be symmetric, as the contexts
which the objects are intended to model are (ordered) lists. Secondly, the use of the symbol
� as one of the context extension operators suggests that � is a cartesian product. This
is indeed the case when ��� � � � 
� is a model of the internal logic, where there are no
dependencies within the variable context � , but not when �� � � � � 
� is a model of the type
theory, where there are dependencies within �. In the latter case, we have the property that
for each object ' extended by �, there is a first projection map ��
�
' �" � '. There
is no second projection map 8�
�
' �" � " in 
, as " by itself may not correspond to a
well-formed type. For modelling the judgement �� ��" �� �
", we do, however, require
the existence of a map �

,
� ��"�� in the fibre over ����� � ��"��.

The interaction between projection and other maps in 
 is stated by requiring the following
pullback in 
:

' � ���"�
� �"
� � �"

'

��
*��

�

�
� �

�-
�

�

The pullback indicates, for the cartesian case, how to interpret realizations as tuples. Suppose

�
!
� " is an arrow in the fibre over ', then there exists a unique arrow '

����!�
�� ' � ".

The pullback does not cover the case for the monoidal extension. For that, we must require

the existence of the unique arrow '
���	!�
�� ' � " in 
, the tuples being given by the

bifunctoriality of �.
A doubly monoidal category 
 with both exponentials or, alternatively, 
 equipped with

two monoidal closed structures ����� �� and ����� ��, is called a doubly closed category
(DCC) in O’Hearn and Pym [24]. DCCs provide a class of models of BI in which both func-
tion spaces are modelled within 
. We will work with the barer doubly-monoidal category,
requiring some extra structure on the fibres to model the function space. This can be seen as a
natural extension to the semantics of bunches to account for dependency. It can be contrasted
to the Barber–Plotkin model of DILL [2], which uses a pair of categories, a monoidal one and
a cartesian one, together with a monoidal adjunction between them. However, such a model
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forces too much of a separation between the linear and intuitionistic parts of a context to be
of use to us.

We now consider how the function spaces are modelled. In the intuitionistic case, the
weakening functor ���
� has a right adjoint ��
� which satisfies the Beck–Chevalley condi-
tion. In fact, this amounts to the existence of a natural isomorphism 0���

����
�� 	����	��
�
�
��(�� #�

����������������������� �
����
�� 	��	�(���
��#��

The absence of weakening for the linear context extension operator means that we can’t
model � in the same way but the structure displayed above suggests a way to proceed. It is
sufficient to require the existence of a natural isomorphism ��
�,

����
�
� �� 	����	��� #�
������������������������
����
�� 	��	�����
� ��" �#�

in the indexed category. Here, we use � to range over � and �, and � to range over 
 and �.
There are a couple of remarks that need to be made about the isomorphism. Firstly, it refers
only to hom-sets in the fibre whose source is �. This restriction, which avoids the need to
establish the well-foundedness of an arbitrary object over both ' and '�", suffices to model

the judgement� �� � 
" as an arrow �
��! ��
� ��"�� in the fibre over �����: examples are provided

by both the term and set-theoretic models that we will present later. The second remark we
wish to make is that the extended context is defined in the �� � �-indexed functor. The reason
for this can be seen by observing the form of the forcing clause for application in BI. Given
these two remarks, the above isomorphism allows the formation of function spaces.

The type theory also contains an additive conjunction connective, &. This is modelled by
requiring each category ���& ��'� to have products.

DEFINITION 3.2
Let �
��� �� be a commutative monoid (of ‘resources’). A Kripke resource ��-structure is
an 
-indexed set of functors

��� 
 �� � �
��� Cat�� � � � 
��

where �� �
� is a poset, 
�� � I I���

��
� , where & � � and each 
� is a small doubly

monoidal category, with � 	�� � ,10 and Cat is the category of small categories and functors
such that

1. Each ���& ��'� has a terminal object, ��
�� 	��	, preserved on the nose by each � ���
���& �����, where � 
� � ' � 
� .

2. For each & � � , ' � 
� and object " � ���& ��'� there is a ' �" � 
� .

For the cartesian extension, there are canonical first projections ' � "
���

� ' and

canonical pullbacks

10Note that [15] has a bad typographical error, corrected in [16]: It has �
� - where it should have � �
� - .



Kripke Resource Models of a Dependently-typed, Bunched �-calculus 1083

� � ���"�
� �"
� ' �"

�

�-
*��

�

�
� '

��
�

�

The pullback indicates, for the cartesian case, how to interpret realizations as tuples. In

particular, for each �
!
� " � ���& ��'�, there exists a unique arrow '

���!�
� ' � ".

It does not cover the case for the monoidal extension. For that, we require there to exist a

unique '�� ' � ��
��	!�
� ' � ", the tuples being given by the bifunctoriality of�.

For both extensions, there is a canonical second projection �
,��

� " in the fibre over

' �".
These maps are required to satisfy the strictness conditions that ������"� � " and
�� ��� � ���� for each " � ���& ��'�; ������"�� � ��� ����"� and ������"��� � �

" � ��� �� � " for each �
�
� � and �

*
� ' in 
� . Moreover, for each & and ',

' � ��
�� 	��	 � '.
3. For each ', ", there is a natural isomorphism ��
�,

����
�
� �� 	����	��� #�
������������������������ �
����
�� 	��	�����
� ��" �#�

in which the extended context is defined in the � � � �-indexed functor. This natural
isomorphism is required to satisfy the Beck-Chevalley condition: For each �

*
� ' in


� and each # in ���& ��' �"�

�����
�#� � �-
*����� � �1��
�#� �

4. Each category ���& ��'� has cartesian products.

Our approach is modular enough to also provide a categorical semantics for the intuition-
istic fragment of the ��-calculus, the ��-calculus. For that, we work with a Kripke ��-
structure which consists of a single functor ��
�� � ����� Cat��, where � is (essentially) a
category with only the (modified) cartesian structure ��� �� on it [35]. The definition of � as
right adjoint to weakening can be recovered from the natural isomorphism.

This can be seen in the Lemma 3.3, which is motivated by the propositions-as-types cor-
respondence discussed earlier. We embed a Kripke resource ��-structure �� � � � � 
�
into a Kripke ��-structure � and show that the function space given by ��

��#� in the
��-structure case is just that given by ��
��#� in the ��-structure case. Such a result is
to be expected, as a ��-structure has just the sub-structure of a ��-structure to model the
intuitionistic fragment of the ��-calculus. Recall that a Kripke ��-structure is a functor
� 
 �� � ����� Cat��, where � is (essentially) a category equipped with just the (modified)
cartesian closed structure, plus the usual coherence conditions.
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LEMMA 3.3
The natural isomorphism


�!� � .����� ��������
�
������� ��


� .����� �������	������� � 
�!��
�
�

in the Kripke ��-structure �, is just the ��
� natural isomorphism in the '�" case in the
Kripke resource ��-structure.

PROOF. Fix a �� to work in. Then define a translation, �, from the ��-structure to the ��-
structure. Informally, the translation can be seen as follows:

���/ ��� � � � � � �� �
	
� 0 �� ��/ ���� � � � �� ��� �

	 �

� 0�

where the primed components are the same as the originals except that, for objects, the ��-
structures ����������� operators are translated into the ��-structures �����������
operators (we add � to the ��-structure in the obvious way) respectively. A similar trans-
lation is done for the morphisms. The key point is that �’s action on is to forget the linear-
intuitionistic context extension operator difference, translating both to the context extension
operator �. The units are dealt with similarly: both are translated to the � unit context �.
The translation has some similarity with Girard’s translation of �� � into ��� � [9].

To show that the natural isomorphisms are the same, we start with the conclusion of the
natural isomorphism ��
� and compute:

.���
�� ����������� ���
�

.����� ��������	����������
��������������������������� 
�!���
.������ ����������

�
��������� �����

which is the translation of the premiss of the ��
� natural isomorphism. This is so as the
first projection ��
�
' �" � ' exists in each 
.

Syntactically, the Lemma 3.3 should be seen as a translation from the ��-calculus to the
��-calculus (and so the reverse of the translation used to show the strong normalization part
of Theorem 2.10). More semantically, it should perhaps be seen in a 2-categorical setting.
The statement of the lemma would be that in some category which has those structures as its
objects, one should be able to construct an arrow from a ��-structure to a ��-structure.

3.2 Kripke resource �-��-model

A Kripke resource model is a Kripke resource structure that has enough points to interpret
not only the constants of 	 but also the ��-calculus terms defined over	 and a given context
�. Formally, a Kripke resource model is made up of five components: a Kripke resource
structure that has 	-operations, an interpretation function, two 
-functors, and a satisfac-
tion relation. Except for the structure, the components are defined, due to interdependences,



Kripke Resource Models of a Dependently-typed, Bunched �-calculus 1085

simultaneously by induction on raw syntax. This explains the long and complex formal defi-
nition of the model (below).

Ignoring these interdependencies for a moment, we explain the purpose of each component
of the model. Firstly, the Kripke resource structure provides the abstract domain in which the
type theory is interpreted. The 	-operations provide the points to interpret constants in the
signature. Secondly, the interpretation ����� is a partial function mapping raw (that is, not
necessary well-formed) contexts � to objects of 
, types over raw contexts "� to objects in
the category indexed by the interpretation of �, and terms over raw contexts � � to arrows
in the category indexed by the interpretation of �. Types and terms are interpreted up to 67-
equivalence. Thirdly, the 
-functors maintain the well-formedness of contexts with regard
to joining and sharing. The model must also be constrained so that multiple occurrences
of variables in the context get the same interpretation. Finally, satisfaction is a relation on
worlds and sequents axiomatizing the desired properties of the model. In stronger logics, such
as intuitionistic logic, the abstract definition of the model is sufficient to derive the properties
of the satisfaction relation. van Dalen’s description of a Kripke model for intuitionistic logic
is done this way, for instance [43]. In our case, the definition is given more directly. More
remarks on the definition of a model will be in order following its presentation.

We remark that we restrict our discussion of semantics to the � �� � 
"
����-fragment.
The treatment of the � �� "
,-fragment is undertaken analogously — in a sense, the "
,-
fragment has the same logical structure as the � 
"-fragment. To interpret the kind ����,
we must require the existence of a chosen object, call it �, in each fibre. The object � must
obey several equations: it must be preserved on the nose by any � � and must behave well
under quantification. Details of the treatment of the "
,-fragment in the case of contextual
categories are in Streicher’s thesis [41]. The analogous development in our setting is similar
and we omit the details.
DEFINITION 3.4
Let 	 be a ��-calculus signature. A Kripke resource 	-�� model is a 5-tuple

����
�� � �
��� Cat�� � � � 
�� ������ ���
� �!���� �����

where ���
�� � �
��� Cat�� � � � 
� is a Kripke resource ��-structure that has 	-operations,
����� is an interpretation from the raw syntax of the ��-calculus to components of
��
�� � �
��� Cat��, ���
 and �!��� are 
-functors and ��� is a satisfaction relation on worlds
and sequents, defined by simultaneous induction on the raw structure of the syntax as follows:

1. The Kripke resource ��-structure has 	-operations if, for all & in� ,
(a) corresponding to each constant 0�����"� � � � �����"� ����� � 	 there is in each
���& ��������

�
�

� an operation ��� such that

���������� ��
�
��

� � � � � ������ ��
�
��

�

is an object of ���& �������
�
�

�, where

�����
�
�


� �!��� ���
�������
�
��

� � � � � �!��� ���
�������
�
�


� ������
�
�

� � � �� �

(b) corresponding to each constant 0�����"� � � � �����"� �" � 	 there is in each

���& ������� ���"�� � � � � ���"���
�
�

�

an arrow ��
�� 	��	
���
�� ��"��

�
�


, where ' � ����� ���"�� � � � � ���"���
�
�


.
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2. An interpretation �������
 , in each such ��, satisfies, at each & :

(a) ��������
  �� ;

(b) ���� �
"��
�
�
�
�

 �����
�
�

� ��"���

�
�
�

;

(c) ���� ��"��
�
�

 �����

�
�

� ��"���

�
�


;

(d) ���
�!�
���
!��
�� ���

�

�

 �������


���!���
���
��


���
��!���
���
��

�

�� �������
 ,

where �������
 � �!��� ���
�������
�
��

� � � � � �!��� ���
�������
�
��

� ������
�
��
� � � ��;

(e) �������
�
�

 �������

�


;

(f) ���0�� � � � ������
�
�

 ���������� ��

�
�
�

� � � � � ������ ��
�
�
�

� in ���& �������
�
�

�,

where �������
 � �!��� ���
�������
�
��

� � � � � �!��� ���
�������
�
��

� ������
�
��
� � � ��;

(g) ����
" �#���
�
�


 �������
�



������
�
��

���#�
�����
�
�
��

� , where the extended context is de-
fined in the � � �-indexed model;

(h) �����" �#���
�
�

 �������

�


������

�
�


���#�
�
���
�
�

�;

(i) ��"�#���
�
�

 ��"���

�
�

� ��#���

�
�


;

(j) �������
�
�

 �������

�


;

(k) ��0
���
�
�

 �������;

(l) ����
�����
�
�

 8���
������

�


;

(m) ��� �
" �����
�
�

 �������

�


������

�
�


�����
�����
�
�

�;

(n) ��� ��" �����
�
�

 �������

�


��
����

�
�


�����
�
���
�
�

�;

(o) ���+���
�
��
 ���������

�


� ��+���
�
��
�
�
����

������
�



������
�
��

�������
�
�

���,

where ��������
�� � ���
��������
 � �����
�
��
� and �������� � �!����������

�
�
��

�;

(p) ����� +����
�
�

 �������

�
�


� ��+���
�
�

�;

(q) ��/�������
�
�

 /��������

�
�

�, where � � ��� ��.

Otherwise the interpretation is undefined.

3. There exists a bifunctor ���
 on 
. The purpose of ���
, on objects, is to extend the first
object with the second, discarding any duplicate cartesian objects. The definition of ���

on objects is as follows:

���
���������
 � ������
�
�

� � ��������


���
��������
 � ���� �
"�������� � ���
��������
 � �����
�
��
� � ���
"�����

���
����� �
"��
�
�
��

� �����
�
��
� � ���
��������
 � �����

�
��
� � ���
"��

�
��

���
����� ��"��
�
�


� ���� ��"��
�
��
� � ���
��������
 � �����

�
��
� � ����"��

�
�
��

�

The definition of ���
 on morphisms is similar. It is easy to see that �������
�� �

���
��������
 � �����
�
��
�.

There exists a functor �!��� on 
. The purpose of �!��� is to regulate sharing of multiple
occurrences of an object. The definition of �!��� on objects is as follows:
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�!������������
 � � ��������

�!���������

�
�

� � ���
��!���������

�
�����

�� �����
�
�������

�

if �������� � ���
����� �
"������������ � ���� �
"�������������� �

	 !*
#��� � �����

�����
�
�����

� ���
��������� � �����
�
���
�

������������� � ���
����
"����� � ���
���������� � ������
�
���
��

� �����
�
�


otherwise.

The definition of �!��� on morphisms is similar. The purpose of �!��� is to ensure that
the joined objects and morphisms are well-formed.
Both ���
 and �!��� ‘cut across interpretations’ in that the result object is in a different

-indexed model from the argument object(s). This is necessary for defining the inter-
pretation of function application.

4. Satisfaction in the model is a relation over worlds and sequents such that the following
hold:

(a) ��� & ��� �0
"� ���� if and only if 0 � 1���	�;
(b) ��� & ��� ��
"� ��� ��"� if and only if ���� ��"��

�
�


is defined ;
(c) ��� & ��� �� 
 ��
" �#� ��� if and only if for all & 
 & � and for all �� � 
,

if �.� & � ��� �+ 
"� ���, then �/� & � ��� ��+ 
#�+3��� ���, where ������
�

�
��
�

���
�������
�

�

� �����

� �

��
� and ������

�

��
� �!����������

� �

�
��
�;

(d) ��� & ��� �� 
"�#� ��� if and only if ��� & ��� �/����
"� ���, for � � ��� ��;
(e) ��� & ��� �� 
 ���" �#� ��� if and only if for all & 
 & �, if ��� & ���

�+ 
"� ����, then ��� & ��� ��+ 
#�+3��� ���, with
�����

�
�


� ���
��������
 � ������
�
�

�.

We require two further conditions on the model:

1. (Syntactic monotonicity) If ��� ��
�
�


is defined, then ��� ���
�
�
�

is defined, for all subterms � �

of � and summands � � of �. This condition is needed for various inductive arguments. It
is not automatic as the interpretation is defined over raw objects.

2. (Accessibility) The functor���& � has domain 
 � I I���(��
�
�� 	. So that �������
 � 
�

and ������
�

�

� 
� � . If there is an arrow & 
 & � � � , then

(a) there exists a functor 9

� � 
� � such that 9���� ��
�
�

� � ��� ��

� �

�

, where � (recall)

ranges over contexts, types and terms;
(b) ���& ��������

�
�

� � ���&

��������
� �

�

� and ���& �������

�
�

� � ���& �������

� �

�

�, for each

context �; otherwise ���& ��������
� �

�

� is undefined.

A few remarks concerning Definition 3.4 are in order. The type theory has a structural
freedom at the level of terms which, logically, allows the existence of multiple occurrences of
the same proof. However, it can be that, in operating on the representation of two judgements,
the same occurrence of an object in the base of the resulting representation is used to form
the valid terms and types in both representations. This sharing requirement is regulated by
the existence of the functor �!��� on 
.
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The second accessibility condition on the model is the simplest one regarding the model-
theoretic notion of relativization: that of interpreting constructs in one world and reasoning
about them from the point of view of another. In the definition of model, and so in the sequel,
the accessibility relation we take equates contexts, etc. over the worlds. A syntactic term can
be seen, in a certain sense, as a ‘rigid designator’, that is, one whose interpretation is the same
over different worlds, for a semantic object. For example, suppose � proves � � � � 
". If
������

�
�


is defined (given soundness this will be the case), then, for all & 
 & � � � ,

������
� �

�

is defined and equal to ������

�
�


. In a sense, the syntactic term � designates all

objects ������
� �

�

.

We also remark that there are several notions of partiality in the model. Technically, the
interpretation function is a partial one because it is defined for raw objects of the syntax but
the partiality plays two other rôles too. Firstly, there is dependent typing partiality to ‘boot-
strap’ the definition. Secondly, there is Kripke semantic partiality of information, in which
the further up the world structure one goes, the more objects have defined interpretations. We
refer to Streicher [41], Pym [35], and Mitchell and Moggi [22] for some comments regarding
these matters.

The following lemma follows easily from the definition:

LEMMA 3.5
���
 and �!��� are functors.

PROOF. We need to show that both ���
 and �!��� preserve identities and composition. We
omit the details.

We now consider various model-theoretic properties of the satisfaction relation.

LEMMA 3.6 (Monotonicity of ���)
Let 	 be a signature and

���� � � � 
�� ������ ���
� �!���� ����

be a model. If ��� & ��� �� 
"� ��� and & 
 & �, then ��� & � ��� �� 
"� ���.

PROOF. By induction on the syntax of � 
". If & 
 & �, then, by accessibility, ��� ���
�

�

is

defined as 9��� ����
 , where � ranges over �, " and � . For each case of � 
", the conclusion

is given by the definition of ���.

LEMMA 3.7 (���-forcing via global sections)
Let

���� � � � 
�� ������ ���
� �!���� ����

be a Kripke resource model. ��� & ��� �� 
"� ��� if and only if �������
 is defined, ��"���
�
�


is

defined, ������
�
�


is defined and ��
�� 	�������
�


	

��!���
�
�
�� ��"���

�
�


is an arrow in ���& �������
�
�

�.

PROOF. By induction on the structure of � 
".

(0
") For the " direction, we require the model to have enough points, and so get such an
arrow. The# direction is immediate from the definition of ���.

(��") For the " direction, the second projection map �
,
� " in the fibre over the context

�� ��" gives us the required arrow. The# direction is immediate from the definition of
���.
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(� �
" �� 
 ��
" �#) For the" direction, by induction hypothesis we have that

��
���� 	����
������
�
��

	

��!����
��
�
�
��

�� ��#�
�����
�
�
��

is an arrow in ���.�& ������ �
"��
�
�
��

�. We then use the natural isomorphism � to get
the arrow

��
�� 	�������
�


	

������ �!���
�
�
�� ����
" �#���

�
�


in ���& �������
�
�

�. For the# direction, suppose there exists an arrow

��
�� 	�������
�


	

������ �!���
�
�
�� ����
" �#���

�
�


in ���& �������
�
�

�. It follows immediately that the existence of an arrow

����� 	�������
��

	

������
�
���� ��"���

�
��

implies the existence of an arrow

����� 	�������
��
	

��!�	��
�
���� ��#�+3�����

�
��

�

where ��������
�� � ���
��������
 � �����
�
��
� and �������� � �!���������

�
���


. The definition of
��� then gives us ��� & ��� �� �
" �� 
 ��
" �#� ���.

(� ��" �� 
 ���" �#) For the" direction, by induction hypothesis we have that

��
�� 	����
�
����
�


	

��!���

��
�
�
�� ��#�
�
���

�
�


is an arrow in ���& ������ ��"��
�
�

�. We then use the natural isomorphism � to get the

arrow

��
�� 	�������
�


	

����
� �!���
�
�
�� �����" �#���

�
�


in ���& �������
�
�

�. For the# direction, suppose there exists an arrow

��
�� 	�������
�


	

����
� �!���
�
�
�� �����" �#���

�
�


in ���& ���������
 �. It follows immediately that the existence of an arrow

��
�� 	���
����
�


	

������
�
�
�� ��"���

�
�


implies the existence of an arrow

��
�� 	�������
�


	

��!�	��
�
�
�� ��#�+3�����

�
�


�

where �������
 � ���
��������
 � ������
�
�

�. The definition of ��� then gives us ��� & ���

�� ��" �� 
 ���" �#� ���;
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(� 
"�#) For the" direction, by induction hypothesis twice we have the arrows

��
�� 	�������
�


	

��#��!	���
�
�
�� ��"���

�
�


and

��
�� 	�������
�


	

��#��!	���
�
�
�� ��#���

�
�


in ���& �������
�
�

�. Recall that we can construct products in each ���& ��'�. So we have

the arrow

��
�� 	�������
�


	

���#��!	
#��!	�
�
���
�
�� ��"�#���

�
�


in ���& ���������
 �. For the # direction, by induction hypothesis twice we have that
��� & ��� �/����
"� ��� and ��� & ��� �/����
#� ���. The definition of ��� then
gives us ��� & ��� �� 
"�#� ���.

The substitution lemma for ��� has two cases, one for substituting a linear variable and
one for substituting an intuitionistic one.

LEMMA 3.8 (Substitutivity of ���)
Let 	 be a signature and

���� � � � 
�� ������ ���
� �!���� ����

be a model.

1. If ��� & ��� �- 
. � ��� �
"����, �.� & ��� �+ 
"� ��� and �������+3����
�
�
�

is de-
fined, then �/� & ��� �- 
. �+3��� ���, where
������

�
���
�

� ���
��������� � �������+3����
�
�
�
� and �������� � �!����������

�
���
�

�.

2. If ��� & ��� �- 
. � ��� ��"����, ��� � & ��� �+ 
"� ���� and �������+3����
�
�
�

is de-
fined, then ��� � & ��� �- 
. �+3��� ���, where
�����

�
�
�

� ���
���������
� � �������+3����
�
�
�
�.

PROOF. By induction on the structure of the syntax and the functoriality of models.

1. The linear case is quite interesting as it shows an essential use of several of the model’s
components. In the following, we will omit, for simplicity, the parameters on the inter-
pretation, although it can be seen, by induction, what these ought to be. Then the basic
argument is that, by the structure of the model, we can construct the following square in

� :

�
*�!	 ����������� �������
	
� �
*�!	 ����������� �������� �����

�

+

�

*
� �
*�!	 ����������� �������� ����� � ������

�

�
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where

� � �
*�!	 ����������� ������� � ���
���
 �������������	���� ��� �����������

	 � ��
���
 �������������	���� ��� ���

+ � ��
���
 �������������	���� ���
���
 �������������	���� ��� ��������

� � ���
���
 �������������	���� ��� ���� ���

* � ���
���
 �������������	���� ��� ���� ��������

and �
��
� ������ is, by induction, an arrow in the fibre over ��!��� ���
������� �������� ��"��.

Then, by the functorial structure of the model, we have an arrow

�
����
���
 �������������	���� ��� ���� ���������

���1 ��
� ����
���
 �������������	���� ��� ���� ���������

���% ��

in the fibre over the object ��!��� ���
������� ������� � ���.
��)������	�����	� ��+ �����������.
2. The argument for the intuitionistic case is similar to the linear one, except that we use the

pullback condition to extend the context with ��"��.

4 Soundness and completeness

In this section, we prove the (usual) soundness and completeness theorems for the ��-
calculus with respect to Kripke resource models. The proof of soundness uses the definition
of interpretation and satisfaction in the model. The proof of completeness, via a term model
construction, is more interesting, indicating a view of contexts as resources and worlds.

LEMMA 4.1 (Context and Type Interpretations)
Let 	 be a signature and

���� � � � 
�� ������ ���
� �!���� ����

be a Kripke resource 	-�� model.

1. If� proves �� � �	�
��
, then, for those & where �������
 is defined, �������
 � �)��
�.

2. If � proves � �� "
����, then, for those & where ��"���
�
�


is defined, ��"���
�
�


�

�)�����& �������
�
�

��.

PROOF. Follows from Definition 3.4. The proofs are done by induction on the structure of
proofs of system� and, because of interdependencies, must be done simultaneously with the
proof of Theorem 4.2.

THEOREM 4.2 (Soundnes)
Let 	 be a signature and

���� � � � 
�� ������ ���
� �!���� ����

be a Kripke resource model, and let & be any world in this model. If � proves � � � � 
"
and �������
 is defined, ��"���

�
�


is defined and ������
�
�


is defined, then ��� & ��� �� 
"� ���.
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PROOF. By induction on the structure of proofs of � �� � 
". The proof of soundness is
done simultaneously with the proof of Lemma 4.1. We do some representative cases.

��0� Suppose� proves �� �� 0 
 ����"� � � � �����"� �". By Definition 3.4, ��� � � �


� has enough points to interpret 0 
 ����"� � � � �����"� �" and ��0
���
�
�


� �������
(i.e. � applications of the natural isomorphism on ���) where

��
�� �����	�������������������
�


�

���
�� ����	���������������� ���

�

�

It can be observed that ��0
���
�
�


type-checks. By induction, we have that ��������
 is defined.
So ��� & ��� �0 
 ����"� � � � �����"� �"� ���� follows.

��. ��� Suppose � proves �� �
" �� �
" because � �� "
����. By induction, we have
that ���� �
"��

�
�


is defined. According to Definition 3.4, ����
�����
�
�


� 8���
������
�


and the
latter has the correct type. So we have shown

��
�� 	����
������
�


	

�������
��
�
�
�� ��"���

�
�


and ��� & ��� ��
"� ��� �
"� follows.
������ Suppose � proves � �� � �
" �� 
 ��
" �# because �� �
" �� � 
#. By

induction, we have, for & such that ��#�
�����
�
�


is defined and that ���.& �� �� 
 #�
��� � 
 "�, i.e. that

��
���� 	����
������
�
��

	

��!����
��
�
�
��

�� ��#�
�����
�
�
��

�

We now use the natural isomorphism �������
�



������
�
��

to get

��
�� 	�������
�


	

������ �!���
�
�
�� ����
" �#���

�
�


�

So we obtain ��� & ��� �� �
" �� 
 ��
" �#� ���.
����� Suppose � proves � �� �+ 
#�+3�� because � �� � 
 ��
" �# and � ��

+ 
" with ���� ���� and � � ��$2�����. By the induction hypothesis twice we have
that ��� & ��� �� 
 ��
" �#� ���, that is,

��
�� 	�������
�


	

��!���
�
�
�� ����
" �#���

�
�


and �.� & ��� �+ 
"� ���, that is,

����� 	�������
�

�
	

������
�
���� ��"���

�
��

�

Assume & 
 & � � � . By monotonicity and the definition of satisfaction, we have that

�/� & � ��� ��+ 
#�+3��� ���, where �������
�

�
��
� ���
�������

�

�

� �����

� �

��
� and ������

�

��
�

�!�����������
�

���

�, that is

����� �	�������
�

��

��!�	��
� �

���� ��#�+3�����
� �

��
�
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We check that this is the interpretation given by the model. According to Definition 3.4,
���+���

�
��

is defined and is equal to, using monotonicity,

��������� �

�


� ��+���
� �

��
�
�
�������� �

�


������

� �

��

�������
� �

�

��� �

where � is defined as above. We need to check the types. Firstly, we already have

������
� �

�


 �

�
�� �	�������
�

�

	
�� ����
" �#���

� �

�

�

Applying the natural isomorphism �
������

�

�


������

� �

��

gives us

������� �

�
��

������

� �

�
��

�����
�����
� �

�
��
� 
 ��
���� �	����
������

�

�
��
	 �� ��#�
�����

� �

�
��
�

The functor ��
������

�

�


� ��+���
� �

��
�
�

performs the required substitution. Finally the action of

���
 and �!��� gives us ������
�

��
.

����� Suppose� proves� �� ��� +�
"�# because� proves � �� � 
" and� proves
� �� + 
#. By the induction hypothesis twice, we have that ��� & ��� �� 
"� ���, that
is

��
�� 	�������
�


	

��!���
�
�
�� ��"���

�
�


and that ��� & ��� �+ 
#� ���, that is

��
�� 	�������
�


	

������
�
�
�� ��#���

�
�


�

Now, each category ���& ��'� in the model has products. We use this property in
���& �������

�
�

� to construct

��
�� 	�������
�


	

���!
��
�
���
�
�� ���"�#����

�
�


and ��� & ��� ���� +�
�"�#�� ��� follows.
������ Suppose � proves � �� /����
"�, for � � ��� �� because � proves � ��

� 
"��"�. By the induction hypothesis, we have that �� � & ��� �� 
"��"�� ���,
that is,

��
�� 	�������
�


	

��!���
�
�
�� ���"��"�����

�
�


�

Then the definition of satisfaction allows us to construct, for � � ��� ��,

��
�� 	�������
�


	

��#��!	
�
���
�
�� ��"����

�
�


and ��� & ��� �/����
"�� ��� follows.
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�� �� It is convenient, as we are working in the � 
"-fragment of the type theory, to observe
that 67-equalities are generated by the rule

�� ��" �� � 
# � �� + 
"
�

� �� �� ��" ���+ �+ � �+3�� 
 #�+3��

where ���� ���� and � � ��$2�����, and by the rule

� �� � 
 ���" �#
�

� �� �� *�" ���* �0 � 
 ���" �#

where * 	� �. ��� ��"�. Then, an application of the natural isomorphism and Lemma 3.8,
allows us to show that if � �+0 + , then ��� ��

�
�

 ��+ ��

�
�


.

To see that Dereliction is sound in these models, consider that both ���� �
"�� and ���� ��"��
have corresponding second projection maps (8s) in the fibre over �����. So if a term built out
of linear 8s is soundly interpreted, then so is the one built out of intuitionistic 8s. Note that
the converse fails because of the extra properties of the latter.

We now turn to consider completeness. We begin with the appropriate definition of validity
for ���.

DEFINITION 4.3 (���-validity for ��)
� ��� � 
", i.e. � 
" is valid with respect to �, if and only if, for all models ���� � � � 
��

������ ���
� �!���� ���� and all worlds & such that �������
 , ��"���
�
�


and ������
�
�


are defined,
��� & ��� �� 
"� ���.

Several components of the term structure will be defined using the category of contexts
and realizations, 
�	�, that we defined previously. We need to following definitions prior to
giving a model existence lemma.

PROPOSITION 4.4

�	� is a doubly monoidal category.

PROOF. The two context extension operators are, roughly speaking, taken to be an extension
with " and an extension with �". Formally, of course, we have to define arbitrary combina-
tions of objects (contexts, in this case) rather than extensions. So objects of 
�	� are ��,
i.e. �� ��� �	�
��
 (we are allowed to extend only with types which are well-formed over
contexts). The monoidal operators are defined by induction, using the ���
 operation:

�� � � ���
�����
�� ��� ���� � �

�� � � ���
���� ����

The following rules for the units need to be taken in the type theory:

�� � ��	
��

�

�� - ��	
��


together with the context equivalences which let � and � be, respectively, units of extension
with " and extension with �".
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DEFINITION 4.5
The category ��	�, a full sub-category of 
�	�, is defined as follows:

� Objects:
– �� is an object of ��	�;

– If � is an object of ��	� and there exists an arrow �
��
!�
� ��" in 
�	�, then ��"

is an object of ��	�.
� Morphisms: The arrows just considered.

LEMMA 4.6
The tuple consisting of the set of objects in 
�	�, the context joining operation ������� and
the unit context �� � � defines a commutative monoid.

PROOF. For ease of argument, we will adopt the following notation: �� will denote the join
of the contexts � and �.

We first show that �� behaves as a 2-sided identity. This is immediate due to the coherence
equivalences between contexts.

Next, we show that the joining relation is associative: if �,� and� are valid contexts, then
����� � �����, where ������� �����, ��������, ������� ����� and ���� ����.

The proof of associativity is by induction on the length of the context �����. The base
case is when ����� � ��. By the definition of the joining relation, this implies that � � ��
and that �� � ��. By the same argument, we know know that � � �� and � � ��. We use
the definition to construct ����� which is also equal to ��.

There are three inductive cases to consider, one for each of the �JOIN-L�, �JOIN-R� and
�JOIN-!� rules. For the first of these, we have ����� � ����� �� �
"�� by �JOIN-L�. By
assumption, ������� �
"�� splits into � and ����� �
"� and ����� �
"� splits into � and
��� �
". By the induction hypothesis, � and � join to form ��, and �� and � � join to form
������. By �JOIN-L�, ������ and �
" join to form ������� �
" � �����. The other
two cases are argued similarly and we omit the details.

Lastly, we show the commutativity of the joining relation: if ��� ����, then ����� ��.
The proof is by induction on the length of the context �. For the base case, when � � ��,
the proof is immediate. There are three inductive cases to consider, one for each of the
�JOIN-L�, �JOIN-R� and �JOIN-!� rules. For the first of these, suppose �� �� �
"� �� �
"� ��.
By the induction hypothesis, we have that if �� �� ����, then ����� ��. Then an application
of �JOIN-R� gives us ���� �
"� �� �� �
"�. The other two cases are argued similarly and we
omit the details.

As joining is associative, we can informally say ‘�, � and � join to form ���’. That is,
we can talk about 
-way joining and there need be no confusion.

We remark that in logics which include conjunctions and disjunctions, such as intuition-
istic logic or BI, one must develop the notion of prime theory. Prime theories have exactly
the structure required by the semantic clauses for the connectives and are used to prove com-
pleteness. The construction of prime theories is not necessary in the minimal cases of both
the ��- and ��-calculi, where function spaces are the only connectives. (The ��-calculus
does have the additive conjunction, but the term model inherits enough structure from the
syntax to push the definitions through.)

LEMMA 4.7 (Model Existence)
There is a Kripke 	-�� model

��% �	���� �����
�
� ��	�

� ���
� �!���� ����
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with a world &� such that if � 	�� � 
", then % �	��� &� 	��� �� 
"� ���.

PROOF. We construct such a model out of the syntax of the ��-calculus.
The Kripke 	-�� structure % �	�� is defined as follows. The category of worlds is taken

to be ��	�. The base category is the co-product of 
�	��, where each � � �)���	��. The
indexing monoid is given by the context joining relation �������, as defined by Lemma 4.6.
The functor % �	��, indexed by an element � � �)��
�	��, is defined as follows:

% �	�������� �

�
:)��0�� Types " such that� proves � �� "
����
"����� ��	���� arrows
where ���� ����, � � ��$2�����,

and ���� �� ��, � � ��$2�����.

The algebraic presentation of the type theory and Theorem 2.14 allows us to see that
% �	�������� is a category. We also need to check that % �	�� is a functor.

We next check that % �	�� is a Kripke structure. Each of the following points refers to
those of Definition 3.2:

1. The terminal object in each % �	�������� is taken to be the unit additive context �. We
choose this because the proof theory has the judgement� proves � �� � so that � always
exists in each fibre. � contains no free variables and so is always preserved on the nose
by any � �.

2. The map 8��
�� is given by the term � where �� ��" �� �
". The first projection map
for an intuitionistically extended context

� � ���"�� � � � � ���"�� �����"���

is defined by ���� � ���"�� � � � � ���"�. This is well-defined because weakening is
admissible in the syntax. We need to check that the appropriate square is a pullback. This
can be done using the properties of substitution and we omit the details.
The two extensions, ' � ' � " and ' � ' � ", are given by the context extension
rules of the type theory.
We need to check the strictness conditions. This too can be done using the properties of
substitution and we omit the details.

3. The natural isomophism is given by the abstraction and application rules of the type
theory:

�� ��" �� � 
#
��������������������� �
� �� � ��" �� 
 ���" �#

where ��", recall, ranges over both linear �
" and intuitionistic ��" declarations. We
need to check that these meet the Beck–Chevalley condition. This can be done using the
properties of substitution and we omit the details.

4. The products in each % �	�������� are given by the ����� and ������ rules.

The model is defined as follows. % �	�� is the Kripke ��-structure defined above. The
	-operations of the model are given by the constants declared in the signature 	. The inter-
pretation ������� ��	

�

is the obvious one in which a term (type) is interpreted by the class of
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terms definitionally equivalent to the term (type) in the appropriate component of % �	�. The
functors ���
 and �!��� are defined by the joining relation ������� and 2, respectively.

The satisfaction relation ��� in % �	� is given by provability in the type theory. That is,
% �	���� ��� �� 
"� ��� is defined to be � �� � 
", where � is the sharing-sensitive
join of �, � and �. We must check that this relation satisfies the inductive clauses of the
satisfaction relation:

1. �� �� 0
" if and only if 0
" � 	 is immediate as the 	-operations are the 0
"s;
2. �� �
" �� �
" if and only if �� �� �
" �	�
��
 by induction on the structure of proofs

of both hypotheses;
3. � �� � 
��
" �# if and only if � �� + 
" implies � �� �+ 
#�+3��, where
���� �� �� and � � ��$2�����, holds, in one direction, by ����� and, in the other,
by an application of Cut. The intuitionistic case is similar; and

4. � �� � 
"�# if and only if � �� /����
" and � �� /����
# is immediate by the
� rules.

The conditions on the models are met as follows:

1. monotonicity is met by the fact that all terms are well-defined, i.e. constructed in ac-
cordance with the proof rules. so a valid term will only ever be constructed from valid
sub-terms; and

2. accessibility is provided by the posetal nature of ��	�.

From Theorem 2.14, we have that % �	���� ��� �� 
"� ��� if and only if � �� � 
",
where � is the sharing-sensitive join of �, � and �.

We can now finish the proof of model existence. We assume the premiss that � 	�� � 
".
Then, at the initial node (&� � ��), the model constructed from the syntax has the required
property; that % �	��� &� 	��� �� 
"� ���, where �������.

THEOREM 4.8 (Completeness)
� �� � 
" if and only if � ��� � 
".

PROOF. Theorem 4.2 (Soundness) shows the forward direction. For the other, we assume
� 	�� � 
" and apply Lemma 4.7.

5 A class of set-theoretic models

We describe a class of concrete Kripke resource models, in which the ��-structure

���
�� � �
��� Cat�� � � � 
�

is given by �����
�
� �(����� Set��, where 
 is a small monoidal category and (�� is a
small, set-theoretic category of ‘contexts’. The model is a construction on the category of
families of sets and exploits Day’s tensor product construction [8] to define the linear depen-
dent function space.

We start by describing the indexed category of families of sets, ���
�(�� ��� Cat�. The
base, (��, is a small, set-theoretic category defined inductively as follows. The objects of
(��, called ‘contexts’, are (i.e. their denotations are) sets and the arrows of (��, called
‘realizations’, are set-theoretic functions. For each ' � �)��(���, ����'� � �* �
#��� � � � '�. The fibre can be described as a discrete category whose objects are



1098 Kripke Resource Models of a Dependently-typed, Bunched �-calculus

the *s and whose arrows are the maps �%
* � * corresponding to the identity functions

�1
�*� � �*� on * considered as a singleton set. If �
*
� ' is an arrow in (��, then

������ � ��
����'�� ������ re-indexes the set �* � #��� � � � '� over ' to the
set ���5� � #���5�� � 5 � �� over �. We are viewing Set within Cat; each object of Set is
seen as an object, a discrete category, in Cat. Because of this, the category of families of sets
can just be considered as a presheaf ���
�(����� Set�, rather than as an indexed category;
we will adopt this view in the sequel.

We can explicate the structure of (�� by describing��� as a contextual category [5]. The
following definition is from Streicher [41]:

DEFINITION 5.1
The contextual category ���, together with its length and denotation ���
���� Set, is
described as follows:

1. � is the unique context of length � and

������ � �&� �

2. if ' is a context of length 
 and "
����'�� Set is a family of sets indexed by ele-
ments of '�+�'�, then ' �" is a context of length 
� � and

����' �"� � ���� *� � � � ����'�� * � "�����

If ' and � are objects of the contextual category ���, then the morphisms between them
are simply the functions between ����'� and ������.

The codomain of the denotation, Set, allows the definition of an extensional context ex-
tension � but Set does not have enough structure to define an intensional context extension
�. (The obvious candidate, such as some tuple-based construction, is really just a kind of
cartesian product and inherits the �’s structural properties. It may be that some suitable cat-
egory of domains has enough structure to define such a product.) In order to be able to define
both � and �, we denote ��� not in Set but in a presheaf Set�

	�

, where 
 is a monoidal
category. We emphasize that, in general, 
 can be any monoidal category and, therefore, we
are actually going to describe a class of set-theoretic models. For simplicity, we take 
 �� to
be a partially-ordered commutative monoid� � ��� �� ����. The cartesian structure on the
presheaf gives us the � context extension and a restriction of Day’s tensor product [8] gives
us the � context extension.

We note that the restriction of Day’s tensor product we consider is merely this: consider
the set-theoretic characterization of Day’s tensor product as tuples ��� *� �� and, of all those
tuples, consider only those where the * is an element of the family of sets in �. This is quite
concrete, in the spirit of the Cartmell–Streicher models, and is not a general construction for
a fibred Day product.

Within the contextual setting, we then have the following definition:

DEFINITION 5.2
The contextual category �����, together with its length and denotation
���
������ Set�, is described as follows:

1. � is a context of length � and
�������$� � �&� �
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2. � is a context of length � and

��������� ����� � � �

3. if ' is a context of length 
 and "
����'����� Set� is a family of�-sets indexed
by elements of '�+�'����, then

(a) ' �" is a context of length 
� � and

����' �"���� � ���� *� � � � ����'����� * � �"�������� �

and
(b) ' �" is a context of length 
� � and

����' �"��$� � ���� *� �� �

�
��
����'����� �"�����% ����$� � � % ���

The � extension is defined using co-ends. Here we have used the characterization of
Day’s tensor product as tuples, with the restriction, to account for dependency, of the
triples ��� *� �� to those in which * � "����% �.

If ' and � are objects of �����, then the morphisms between them are the functions
between ����'���� and �������% �. ����� is ��� parametrized by�; objects that
were interpreted in Set are now interpreted in Set�.

Now consider ����� in an indexed setting. By our earlier argument relating indexed
and contextual presentations of families of sets, ����� can be seen as a functor category
�����
�(����� Set��. This is not quite the presheaf setting we require. However, we
calculate

�(����� �Set��� �� �(���� ��� Set�
�� ��� (����� Set�
�� ��� �(����� Set���

and so restore the indexed setting (and also reiterate the idea that� parametrizes ���).
Lastly, we say what the 
 and� components of the concrete model are. Define �
��� �� �

��� �� �� and define �� �
� � ��3 ����, where the quotient of � by the relation � �
� � � is necessary because of the separation of worlds from resources (cf. BI’s semantics
[24, 36, 42]). This allows us to define ����� � ������� � ��. The quotiented � main-
tains the required properties of monotonicity and bifunctoriality of the internal logic forcing
relation. It is then easy to check that������� � �� does simulate �����.

We check that�����
��� �(����� Set�� is a Kripke resource ��-structure and that it can
be used to define a Kripke resource 	-��-model.

LEMMA 5.3
�����
��� �(����� Set�� is a Kripke resource ��-structure.

PROOF. Recall that we view Set as Cat. Each of the following points refers to those of
Definition 3.2:

1. The terminal object in each fibre is taken to be the one-point set �&�. As this is not
indexed by any variables, it will always be preserved on the nose by any � �.
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2. If ' � �)��(��� and " is a set indexed by � � ������$��'�, then the two context
extensions are given by ' � " and ' � ". The second projection 8�
� is simply the
element-hood of the set ". The first projection ��
� is defined for the object ' � "
by ��
���� *� � �. The first projection cannot be defined for the object ' � " as the
elements of the denotation of ' � " do not consist of pairs. The pullback and other
coherences need to be checked but these are very similar to the calculations for the term
model, and we omit them.

3. The natural isomorphism � is defined for each type of context extension as follows: for
the� extension, for any set # indexed by the denotation of '�" (write this as #�	�),
we define 0���*�#�	�� � ��#� where, for any � � ���������'�, ��# is defined
as

�� 
������% ��"���� � '%�������� � % ��#��� *�� � * � ������% ��"�����
� �� � ������% ��"����� ���� � ������� � % ��#��� �����

For the � extension, for any set # indexed by the denotation of ' � " (write this as
#���), we define 0���*�#���� � ��#� where, for any � � ���������'�, ��#
is defined as

��
���������"���� � '%����������#��� *�� � * � ���������"�����
� �� � ���������"����� ���� � ���������#��� �����

The inverse functor is just application and defined as follows: For the � case, for any
� � ���������'� and * � ������% ��"���� and � � ���#�,

�
0���* � � ��*� �

For the � case, for any � � ���������'� and * � ���������"���� and � �
���#�,

�
0���* � � ��*� �

We must check that 0���* and �
0���* are isomorphisms and also that the Beck–
Chevalley condition holds. However, these are fairly simple calculations about abstrac-
tion, application and substitution in Set, with just the additional, resource parametrization,
and we omit them.
We comment that, although we only require a natural isomorphism for our lemma, we
have described the adjoints to � and � in Set�.

4. The product � � + of two objects in each fibre is taken to be the cartesian product of
the corresponding singleton sets ��� � �+�.

LEMMA 5.4
����� can be extended to a Kripke resource 	-��-model.

PROOF. The category ����� is defined as follows: ���������'� is the family of '-
indexed sets at �. That����� is a functor arises due to a combination of the bifunctoriality
of� and the functoriality of the presheaf �(����� Set�.

The definition of a model requires the structure to have enough points to interpret the
constants of the signature. We can work with an arbitrary signature and interpret constants
and variables as the functors (�
��
�� Set and '
�� Set respectively.



Kripke Resource Models of a Dependently-typed, Bunched �-calculus 1101

The interpretation function ������
�����

is parametrized over worlds–resources �. The inter-
pretation of contexts is defined following the same idea as the construction of the category
(��:

1. ���� �
"��
�	�
�����

 �����
�
�����

� ��"���
�
�����

;

2. ���� ��"��
�
�����

 �����
�
�����

� ��"���
�
�����

.

The interpretation of functions is defined using the 0���* functor and the interpretation of �
is defined using the product in each set.

The interpretation function is defined simultaneously with the instances of the functors
���
 and �!��� on (��. The definitions of these are similar to those for the joining relation
������� and the sharing function 2 of the term model. We omit the details.

Satisfaction is a relation over � and �(����� Set� with the clauses reflecting the properties
— in particular, those of application — of the example model:

1. � ��� � 
��
" �# �'� if and only if % � �
" ��� implies

� � % ��� ����
#��3�� �' ����

2. � ��� � 
��
" �# �'� if and only if � ��� �
" ��� implies

� ��� ����
#��3�� �' ����

The conditions on the model are met due to the bifunctoriality of � and the definition of
the interpretation function.

6 Discussion

We briefly discuss what we see as the main deficiencies of the analysis presented herein. The
first important deficiency of this work lies in its level of abstraction. Although our categorical
framework provides a clear definition of the structure which must be carried by a model of
the ��-calculus, it remains rather closely tied to the syntactic organization of the calculus. 11

We should prefer to have a more abstract definition of a class of models, of which our Kripke
resource models would be a (leading) example. We should then seek to show that Kripke
resource models would be complete with respect to such a class, perhaps via a covering
property. Whilst we should welcome a more abstract semantics for the ��-calculus, we
prefer instead to seek a more abstract semantics of a purely bunched calculus, mentioned in
Section 2.7 and discussed below, and so to understand �� in a more general context.

The second important deficiency concerns the relationship between the ��-calculus and
bunched logics [37]. The internal logic of �� admits the bunched version of Dereliction, q.v.
in simple propositional form,

���� �� � ;

������ � ;
�

Moreover, as we discussed in Sections 2.7 and 4, our semantics for �� depends critically
upon the admissibility of Dereliction: The formulation of the axiom sequent as

�� � � " �� � 
 "�

11This objection is, perhaps, common to descriptions of models based on fibrations.
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and its interpretation using second projections from the base category, where �� � � " is
interpreted, to the fibres, where typing assertions are interpreted, guarantees the admissibility
of Dereliction. The syntax and semantics of a purely bunched system, in which Dereliction
is not necessarily admissible, is the subject of current research. A (somewhat speculative)
discussion of this work is provided in [37].

The third important deficiency concerns the absence of a semantic analysis of RLF, the
logical framework associated with ��. Such an analysis should provide an account of the
representation of (Kripke) models of object-logics with (Kripke) models of the type-theory
(i.e. the meta-logic). Such studies, for a variety of frameworks, including LF, RLF and (the
putative) BLF are the subject of current research [30, 31, 32].

Finally, consider the definition of the set-theoretic models in Section 5. It was simpler,
here, to work with an unspecified, arbitrary signature. However, if we consider a signature
which encoded the judgements of an imperative programming language, so that we had such
	-operations in each fibre, then we conjecture that����� provides a basis for a good model
for an imperative programming language. In particular, we conjecture that ����� would
model the behaviour of the store quite finely. The basis for this conjecture lies in work
which uses the internal logic to reason about local–global issues in state-ful programming
[14, 23, 28].
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