Superpixel Segmentation using Dynamic and Iterative Spanning Forest [article]

F.C. Belem and S.J.F. Guimaraes and A.X. Falcao
2020 arXiv   pre-print
As constituent parts of image objects, superpixels can improve several higher-level operations. However, image segmentation methods might have their accuracy seriously compromised for reduced numbers of superpixels. We have investigated a solution based on the Iterative Spanning Forest (ISF) framework. In this work, we present Dynamic ISF (DISF) -- a method based on the following steps. (a) It starts from an image graph and a seed set with considerably more pixels than the desired number of
more » ... rpixels. (b) The seeds compete among themselves, and each seed conquers its most closely connected pixels, resulting in an image partition (spanning forest) with connected superpixels. In step (c), DISF assigns relevance values to seeds based on superpixel analysis and removes the most irrelevant ones. Steps (b) and (c) are repeated until the desired number of superpixels is reached. DISF has the chance to reconstruct relevant edges after each iteration, when compared to region merging algorithms. As compared to other seed-based superpixel methods, DISF is more likely to find relevant seeds. It also introduces dynamic arc-weight estimation in the ISF framework for more effective superpixel delineation, and we demonstrate all results on three datasets with distinct object properties.
arXiv:2007.04257v1 fatcat:gk4rzfltkzh2tm7gvf2w4kqpwa