A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2023; you can also visit the original URL.
The file type is application/pdf
.
A Machine-learning Approach to Predict Missing Flux Densities in Multiband Galaxy Surveys
2023
Astrophysical Journal
We present a new method based on information theory to find the optimal number of bands required to measure the physical properties of galaxies with desired accuracy. As a proof of concept, using the recently updated COSMOS catalog (COSMOS2020), we identify the most relevant wave bands for measuring the physical properties of galaxies in a Hawaii Two-0- (H20) and UVISTA-like survey for a sample of i < 25 AB mag galaxies. We find that with the available i-band fluxes, r, u, IRAC/ch2, and z bands
doi:10.3847/1538-4357/acacf5
fatcat:3ejogdzun5a7vnti4ittypemau