Explainable Machine Learning for Scientific Insights and Discoveries

Ribana Roscher, Bastian Bohn, Marco F. Duarte, Jochen Garcke
2020 IEEE Access  
Machine learning methods have been remarkably successful for a wide range of application areas in the extraction of essential information from data. An exciting and relatively recent development is the uptake of machine learning in the natural sciences, where the major goal is to obtain novel scientific insights and discoveries from observational or simulated data. A prerequisite for obtaining a scientific outcome is domain knowledge, which is needed to gain explainability, but also to enhance
more » ... cientific consistency. In this article, we review explainable machine learning in view of applications in the natural sciences and discuss three core elements that we identified as relevant in this context: transparency, interpretability, and explainability. With respect to these core elements, we provide a survey of recent scientific works that incorporate machine learning and the way that explainable machine learning is used in combination with domain knowledge from the application areas. INDEX TERMS Explainable machine learning, informed machine learning, interpretability, scientific consistency, transparency. 42200 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020
doi:10.1109/access.2020.2976199 fatcat:7wk6ljxlqrdwhpbv7xjk75buk4