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Abstract

We present a head-mounted, stereo-vision based naviga-
tional assistance device for the visually impaired. The head-
mounted design enables our subjects to stand and scan the
scene for integrating wide-field information, compared to
shoulder or waist-mounted designs in literature which re-
quire body rotations. In order to extract and maintain ori-
entation information for creating a sense of egocentricity
in blind users, we incorporate visual odometry and fea-
ture based metric-topological SLAM into our system. Using
camera pose estimates with dense 3D data obtained from
stereo triangulation, we build a vicinity map of the user’s
environment. On this map, we perform 3D traversability
analysis to steer subjects away from obstacles in the path.
A tactile interface consisting of microvibration motors pro-
vides cues for taking evasive action, as determined by our
vision processing algorithms. We report experimental re-
sults of our system (running at 10 Hz) and conduct mobility
tests with blindfolded subjects to demonstrate the useful-
ness of our approach over conventional navigational aids
like the white cane.

1. Introduction
Visual impairment leads to loss of independence in per-

forming several routine and life-enabling tasks. Accord-
ing to a survey carried out in [14], the task of route plan-
ning and unforseen obstacles can severely impede the inde-
pendent travel of sightless individuals and will reduce their
willingness to travel, despite having access to the long cane
or guide dog. Genensky et al. [13] reported difficulties in
detecting small obstacles in the path of travel, uneven walk-
ing surfaces and horizontal objects at eye level or lower for
a majority of 94 visually impaired subjects interviewed. It
has been estimated that more than 30% of the blind popula-
tion do not ambulate autonomously outdoors [7]. All these
factors, therefore, underscore the necessity of a device that
aids in detecting obstacles (structured or unstructured) and
helps perform wayfinding.

Pending the availability of more current information, ap-

Figure 1. Tactile cuing system with headmounted stereo camera
for a wearable mobility aid. Vibration motors located on the shoul-
der and waist guide the subject around obstacles. There are two
modes of operation - the vibrations motors on the vest can be ac-
tivated by manual control for initial validation experiments. In the
final experiments, an online SLAM algorithm with obstacle detec-
tion autonomously communicates via wireless interface.

proximately 109,000 people with vision loss in the US used
long canes to get around in 1990 [1] and just over 7000
used dog guides. It is estimated that annually, only about
1,500 individuals graduate from a dog-guide user program
[2]. While these navigational aids are currently the most
popular, they also have limited usability in crowded re-
gions, social situations and definitely do not resolve the pri-
mary issues of independent mobility and non-reactive nav-
igation (that is, avoiding an obstacle without actually hav-
ing to touch it). Electronic travel aids (ETAs), leveraging
ultrasonic [6, 10, 18], laser [5, 33] or vision sensors, are
designed to further enhance user confidence about mobil-
ity. Vision offers a cheap, passive and low power modality
that provides high information bandwidth that can be ex-
ploited for developing sophisticated applications towards a
real-time mobility aid.

In this paper, a novel, wearable, low-vision aid is pro-
posed that utilizes computer vision algorithms for providing
navigational assistance to patients with impaired vision1.

1This work was supported in part by the National Science Foundation
under Grant No. EEC-0310723

1
15978-1-4244-7030-3/10/$26.00 ©2010 IEEE

Authorized licensed use limited to: University of Southern California. Downloaded on August 16,2010 at 18:03:17 UTC from IEEE Xplore.  Restrictions apply. 



Figure 2. System Overview

Our design consists of a head-mounted stereo camera that
provides data for running an online SLAM algorithm along
with obstacle detection (see figure 1). Based on the pro-
cessed output, a wearable array of microvibration motors
provides tactile cues to alert about the presence of obstacles
and guide the user along a computed, safe path. To the best
of our knowledge, our device is the first instance of a com-
pletely developed system for such a wearable application.
Furthermore, we also present results of experiments carried
out with the system to evaluate mobility performance for
blindfolded subjects. The rest of this paper is divided as fol-
lows. We cover vision based mobility devices and SLAM
applications in Section 2. Beginning with an overview of
our system, we describe the various building blocks in Sec-
tion 3. Experimental and evaluation results are presented
in Section 4 and we finish with conclusions and plans for
future work in Section 5.

2. Literature Review

A stereo camera configuration is described in [8], that
conveys depth information by means of a tactile interface
and requires the user, over time, to learn to associate pat-
terns of tactile stimuli with corresponding objects. This
approach leverages the concept of sensory substitution [3],
which is a mechanism by which characteristics of one sen-
sory modality (in this case, vision) are transformed into
stimuli of another sensory modality (touch). However, the
system proposed in [8] can be expected to impose signif-
icant training time and cognitive load on the user due to
the non-semantic nature of the information conveyed. The
ASMONC system described in [22] integrates stereo vision
with sonar sensors to derive high level information that re-
quires less interpretation and is more meaningful for navi-
gation. As all the sensors are fixed on the body, the subject
has to perform bodily rotations to integrate wide field scene
information. A head-mounted setup, on the other hand, en-
ables a subject to stand and scan, thereby allowing the sys-
tem to gather more information about the scene to plan the

safest and most efficient route. This has significance for
those who are completely blind as they might not always be
oriented in the correct direction. Orientation information is
particularly useful as determining how the user is spatially
located with respect to obstacles helps in generating correct
cues for taking evasive action.

Simultaneous Localization and Mapping (SLAM) incor-
porates noisy sensor data and motion model to reliably com-
pute camera trajectory and scene information and can be
used to maintain reliable estimates of pose. This approach
has been proven to be quite successful in navigation for
autonomous robotic systems [24, 21] and urban/landscape
modeling [26]. Vision based SLAM systems have also been
proposed for wearable applications such as augmented real-
ity [17]. Implementing SLAM systems intended for wear-
able applications, however, is a significantly different prob-
lem from that in robotics as there is no reliable way to pre-
dict user motion.

While visual SLAM systems with single cameras [9]
show good performance, we are interested in reconstructing
metric maps for obstacle avoidance and therefore, employ
stereo cameras. The idea of a SLAM-based mobility aid is
not new. In [29] and later, in [28], the authors describe a
stereo vision based setup that utilizes estimates of camera
trajectory to predict user motion and build 3D maps of the
vicinity. The described system, however, detects only over-
head obstacles and being shoulder-mounted, does not have
the advantages just described.

3. System Description

Figure 2 provides an overview of the main components
of our system. We always maintain information about the
current camera pose and a ‘traversability map’ of the region
surrounding the user’s location. Camera motion is tracked
using a visual odometry pipeline along with a SLAM mod-
ule to obtain consistent results. The SLAM implementa-
tion is a Rao-Blackwellised particle filter (RBPF) [25] in
a FastSLAM [24, 23] framework using a combination of
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KLT [20] and SIFT [19] tracking to solve for data associ-
ation. Each observed feature i yields a corresponding 3D
point (from stereo triangulation) µi and an associated co-
variance Σi arising from errors in feature localization and
stereo reconstruction. This landmark-based scheme is in-
spired from the approach described in [30]. An important
point to note is that the SLAM map and traversability map
are two different objects. The SLAM map is collection of
sparse landmarks that is propagated every frame to yield
consistent camera pose estimates. It is only a by-product
of the SLAM algorithm and is not employed for any other
purpose. On the other hand, the traversability map is cre-
ated by registering and processing dense 3D point-clouds
obtained by stereo triangulation. However, we do not com-
pute a dense 3D cloud at every frame. The traversability
map is only updated when camera motion exceeds a cer-
tain threshold such that there is significantly new 3D data
available. This helps to keep computational and memory
costs low and not perform redundant computations. The
current orientation and traversability map are used to gener-
ate tactile cues to keep the subject on a ‘safe’ path. We have
adopted tactile cues instead of audio since the latter impose
greater cognitive load on the subject and blind users rely on
hearing to perform a wide variety of other tasks.

3.1. Stereo Vision Odometry

Camera motion can be estimated by matching features
across two stereo views. Let P t−1

L , P t−1
R represent the left

and right cameras before the motion and P t
L, P

t
R be the pair

after. Matched correspondences across (P t−1
L , P t−1

R , P t
L)

or (P t−1
L , P t−1

R , P t
R) can be used to compute the camera

motion using the three-point algorithm [15] in a RANSAC
[12] setting. For added robustness, however, we match
features and measure reprojection errors across all four
views. Furthermore, since the stereo geometry is known a-
priori, the associated fundamental matrix F is used to refine
matches by minimizing the following constraint

x>RFxL = 0 (1)

(xL, xR) represents the feature correspondence set in ei-
ther of the stereo pairs. This minimization can be achieved
in closed form using the technique described in [16]. Fi-
nally, once the motion is estimated and corresponding in-
liers found, sparse bundle adjustment [31] is applied to get
a more consistent solution. The feature covariances can
be propagated to get the motion uncertainty for use in the
SLAM filter.

3.2. Metric-Topological SLAM

Since we expect the system to be used for traversing and
mapping large areas that could potentially lead to several
thousands of landmarks, we adopt the metric-topological

approach described in [27]. This has two levels of envi-
ronment representation: local, metric (submap) and global,
topological. The local submap level estimates state infor-
mation corresponding to the six dimensional camera tra-
jectory st and sparse map mt, given feature observations
(KLT/SIFT) zt and camera motion estimates ut collected
until the current time t. In the standard RBPF formulation,
an approximate but highly efficient solution can be obtained
by the following factorization:

p(st,mt|zt, ut) ≈ p(st|zt, ut)
∏

i

p(mt(i)|st, zt, ut) (2)

mt(i) is the ith landmark in the map, represented by a
normal distribution ∼ N(µi,Σi). Each time a feature is re-
observed, the corresponding landmark is updated using the
extended Kalman filter. Rao-Blackwellisation enables us
to only update the observed landmark instead of the whole
map. At the global level, the map is represented as a collec-
tion of ‘submaps’ using an annotated graph:

G =
({

iM
}

i∈Ωt
,
{

b
aΛ
}

a,b∈Ωt

)
(3)

iM are the metric submaps, Ωt is the set of computed
submaps and b

aΛ are the coordinate transformations be-
tween adjacent maps. Each local submap, built using equa-
tion 2 in the time interval t−τ to t, encapsulatesN samples
of the camera pose trajectory and per-particle maps. A new
submap is created when the per-particle map size exceeds
a certain threshold (hard constraint) or a ‘visually novel’
region is detected (soft constraint). The latter determina-
tion is achieved by keeping track of the ratio of new feature
observations to older feature tracks. The new submap is ini-
tialized by copying the landmarks in the previous submap
corresponding to the current observations and transforming
them into the new coordinate frame. Adjacent submaps are
conditionally independent due to these shared landmarks
and coordinate transformation. A formal proof of this con-
ditional independence can be found in [11].

3.3. Traversability Map

The ultimate goal of the system is to detect obstacles in
the path and warn subjects about their presence. Obstacle
detection on point cloud data obtained from stereo process-
ing is challenging due to the high noise content, irregular
structure of the operating environment, unknown shape of
the ground surface, changing camera pose and real-time re-
quirements. The typical approach of imposing a horizon-
tal plane in the cloud and computing distance to individual
points in infeasible. We can minimize the computation load
by limiting obstacle detection to only the current vicinity of
the subject. Mobility studies in visually impaired subjects
have found that successful navigation requires information
only upto 3 meters ahead [4]. Our conservative strategy,
therfore, is to extract a sphere of data around the subject
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Figure 3. Mean absolute errors in estimation of camera yaw for three levels of angular velocity

(a) Mapping a room (b) Mapping a larger environment
Figure 4. Mapping results for small and large indoor environments. (a) shows a dense 3D, textured map with selected regions magnified
with the corresponding images and (b) shows an untextured map projected onto the ground plane for a much larger environment. Inset
displays the floorplan corresponding to the latter with the camera trajectory (30 meters long) superimposed in red.

with a radius of 5 meters and perform scene interpretation
in this region.

We adopt the technique described in [32] for handling
large point-clouds by constructing a multi-surface elevation
map. The point cloud region is quantized into a 2D grid,
and for each bin, the heights of the points falling within it
are stored. A brief review of the algorithm, modified for our
application, follows:

• Height intervals are computed for each bin from the
stored values. Two consecutive heights belong to the
same interval if the values are closer than a given gap
size. The gap size can be equal to or greater than the
height of the person to enable him/her to pass through.
This implies that each bin can have more than one
height interval. For instance, if there is an open door,
points belonging to the floor will fall in one interval
and those belonging to the upper section of the wall
will fall in another.

• Each interval is classified as a horizontal or vertical
patch, based on the height of the interval. If the height
exceeds a certain threshold thickness, then it is consid-
ered as vertical, otherwise it is horizontal.

• We label any vertical patch as untraversable and if any
new data point during update falls in it, it is ignored.

• If a horizontal patch has atleast 5 neighbors with hor-
izontal patches, all under a certain height difference,
then it is labeled traversable. To compute this neigh-
borhood efficiently, we scan the 2D grid from left to
right, top to bottom. If the bin has a horizontal patch, it
is stored as a node in a graph. Next, the upper three and
left grid cells in the 3 × 3 neighborhood are checked
and edges are added to corresponding nodes if they ex-
ist and height differences are below the threshold. A
second pass checking for the number of edges for each
node determines the final traversability map.

3.4. Predicting Motion and Cue Generation

As mentioned before, our head-mounted design is moti-
vated by the potential for subjects to stand and scan, inte-
grating wide field information. To perform obstacle avoid-
ance, however, it makes more sense to convey information
relative to the body position. To this end, we keep track
of the magnitude and direction of motion. At any instant,
if the magnitude of translation with respect to the previous
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Figure 5. 3D reconstructed map with camera trajectory (red, 232
meters) for the outdoor test environment. Selected regions have
been magnified for visualization.

(reference) position exceeds a certain threshold, then the di-
rection of motion and reference position are updated. The
direction is obtained by the line joining the current position
to the previous position. If there is very little translation,
however, no position updates are performed and it is as-
sumed that the subject is standing in the same location (see
figure 7).

Currently, the approach for cue generation is very sim-
ple. For instance, if the user is at a location such that the
nearest and most continuous traversable path is to the left,
then the vibration motor corresponding to that direction is
activated. This can obviously lead to trap situations, and a
more sophisticated route planning algorithm is planned for
future work (see Section 5).

4. Results
We present results for the various modules of our sys-

tem in this section. The Bumblebee2 stereo camera sold by
Point Grey Research was used for all our experiments. Re-
sults of human mobility testing with normal sighted subjects
under blindfold are also provided.

4.1. Visual Odometry and SLAM

Figure 3 shows the errors obtained for camera head-
ing (yaw) when compared with readings from a com-
mercially available Inertial Measurement Unit (IMU). The
IMU, sold and manufactured by Intersense Inc under the
brand name InertiaCube3, was mounted on the camera
to provide ground truth data. Visual odometry and IMU
are both prone to drift and so, the error estimates com-
pare frame-to-frame motion rather than accumulated mo-
tion. The yaw angle was selected for analysis as it under-
goes the most change during head scanning motions. Per-
formance for three different conditions are evaluated: slow
camera rotation (less than 5 degrees/second), medium cam-
era motion (5-20 degrees/second) and fast camera motion

Figure 6. Multi-level surface patch models of 3D point clouds. Red
regions show vertical surfaces and green regions indicate horizon-
tal surfaces. The cone represents the current camera orientation.

(20-30 degrees/second). Faster camera motions are not ex-
plored as these lead to significant motion blur and small to
no image overlap between two consecutive frames resulting
in tracking failure. During SLAM execution, such cases are
handled by resetting the tracking system and reinitializing
the odometry. All the errors are of subdegree magnitude.
The error and variance is largest for small rotations and this
is because of the increased sensitivity to outliers and nu-
merical inaccuracies. Medium scale motion represents the
optimum trade-off between this scenario and that caused by
mismatches and motion blur during faster rotations. Figure
4 shows the result for indoor mapping and figure 5 shows
SLAM results for a large, outdoor environment. Over 2206
frames were processed for the result in figure 4(b), while
the outdoor result involved 8000 frames. The SLAM and
visual odometry modules, encompassing feature extraction,
matching, motion estimation and RBPF FastSLAM with
metric-topological representation currently operate at 10 Hz
on a 3.39 GHz, Pentium dual core PC equipped with 3 GB
of RAM. The dense 3D, textured maps are shown here only
for providing a qualitative measure of the reconstruction ac-
curacy. In actual operation, storing such large amounts of
data is not recommended. Instead, as described earlier in
Section 3.3, 2D elevation grids are constructed for the re-
gions around the user’s current location.

4.2. Traversability

Figure 6 shows multi-level planar matches for the 2D el-
evation grids constructed from dense 3D point clouds. The
gap interval is set at 2 meters and any patch with a thick-
ness greater than 30 cm is labeled as vertical. These results
correspond to data acquired for one frame only. In figure 7,
snapshots of system operation during different time instants
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(a) (b) (c)
Figure 7. (Top) Top-down view of the traversability maps corresponding to different time instants (below) of system operation. Blue regions
indicate unmapped areas in the subject’s neighborhood, green regions are traversable and red regions are not. The yellow cone shows the
current user position and head orientation. The magenta line attached to the cone is the direction of motion and predicted body orientation.

are shown. Note that between figure 7(a) and 7(b), there
is not much translation motion as only scanning is being
performed. Consequently, the estimated body orientation
remains the same and therefore, the magenta line (motion
direction) divides the scene accordingly into left and right
halves. In (c), however, the motion direction has changed as
the subject moves along that particular direction. The cuing
system will now identify between left and right based on
this updated line. This approach is able to integrate body
and head motions into an accurate sense of ego-location,
thereby providing the system with a sense of the user’s ori-
entation with respect to the scene.

4.3. Mobility Experiments2

We conducted some pilot experiments to evaluate the
performance of our system in providing navigational assis-
tance. Since we are still in the early experimental stages,
we recruited normal sighted subjects and completely blind-
folded them to simulate blindness. Our experiments were
designed to study the effectiveness of tactile cuing in guid-
ing subjects across a simple, indoor mobility course and
compare performance with and without the popularly used
white cane. To this end, we divided our sixteen subjects into
four groups. Group 1 subjects were not blindfolded and
asked to walk through the obstacle course to establish the
most optimum trajectory and time performance. Remain-
ing three groups had blindfolded participants, with group 2
allowed free use of both hands but no mobility aids, group
3 with a white cane only and group 4 with the tactile vest.
None of the subjects had ever seen the obstacle course and
each one went through 10 trials in a single session. An over-
head surveillance camera system recorded the path taken

2Videos of the mobility sessions can be viewed at http://
www-scf.usc.edu/~vivekpra/

Figure 8. Plots of incremental learning over trials for Groups 2,3
and 4 with sigmoid fits. The horizontal asymptote indicates learn-
ing is achieved between the seventh and eight trials

and a custom software tracked the position of the subject
at each time instant. Only the shoulder-mounted vibration
motors were employed for these experiments, with subjects
instructed to step sideways in the direction corresponding to
the vibration. We performed two sets of experiments - one
with manual guidance to establish a baseline and another
with the computer vision system autonomously generating
guidance cues.

In experiment 1, we manually generated the cues using a
wireless remote control (see figure 1). The motivation here
was to learn whether tactile stimuli can be interpreted for
avoiding obstacles. Motors were activated in a manner such
that the subject moved away from the nearest obstacle lying
within 3 meters of his/her path. We expect our system to be
able to autonomously generate such cues (as validated later
in experiment 2). All our blindfolded subjects showed in-
cremental improvement in time performance, indicated by
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the typical sigmoid curves in figure 8. Subjects with full vi-
sion showed no learning and as expected, performed better
by several orders of magnitude. Data from position track-
ing was converted into heatmaps to show distribution of
time spent at various locations along the trajectory typical
to each group (figure 9). Group 2 subjects performed the
second best, as the strategy of wall-following enabled them
to correlate wall texture (such as a window frame or junc-
tion) with obstacle location. This performance, however,
came at the cost of a lot of collisions. Group 3 subjects
fared the worst as the limited information provided by the
walking cane lured them into trap situations, particularly
around wider obstacles. Subjects with the tactile vest did
significantly better than this group (ANOVA tests yielded a
p-value of 0.0002) and their trajectory was closest to the op-
timal set by the sighted subjects. These experiments, ther-
fore, established the need for a device that complements
the guide cane and proved that effective navigation can be
achieved by our strategy of obstacle avoidance.

In experiment 2, the computer vision system au-
tonomously generated the cues and no manual intervention
was attempted. The system built a traversability map and
computed current user orientation and direction of motion
(as shown in figure 7). The subjects were given cues to
move such that the most continuous, traversable area from
the current position lay in the path directly up ahead. The
stereo camera was tethered to a laptop placed on a cart and
owing to difficulties in moving the cart around obstacles,
navigation tests were limited to only a small section of the
whole course. However, we chose the section that posed the
most difficulty for all groups. The goal here was to evalu-
ate whether autonomous cuing by the algorithm can guide
subjects along a safe path as obtained by manual cuing. Ide-
ally, the system should generate cues such that subjects fol-
low the path taken by those under manual guidance. The
heatmap for this test is shown in figure 10. The realised
trajectory is close to that in figure 9 for group 4 and demon-
strates desired performance of the system. The accompany-
ing video file has clips showing navigation by blindfolded
subjects using autonomously generated cues by our system.

5. Conclusion and Future Work
We have presented an integrated framework which uses

advanced computer vision techniques like SLAM and ob-
stacle detection for application in a mobility assistance de-
vice for the visually impaired. Furthermore, we have also
shown that coupled with a tactile cuing system, an intelli-
gent set of algorithms can guide vision-deficient subjects
through an obstacle course with minimal cognitive load.
However, the navigation strategy adopted here can be con-
sidered too simplistic for real-world scenarios. Directing
users towards the nearest open space might not always work
as there might be an obstacle further down the path. We are

working on developing an automated route-planning algo-
rithm that is not just reactive, and in future, plan to imple-
ment a cuing strategy that tries to keep the user on such a
computed path. The Bumblebee2 stereo camera is also very
cumbersome to use and a tethered firewire connection im-
poses constraints during mobility experiments. Our future
plans include incorporating a lightweight, wireless stereo
camera that streams data to a server running our algorithms.
This server will include Graphics Processing Units (GPU’s)
to further boost the frame rate of our system and free up
CPU cycles for other processes. Finally, validation exper-
iments with visually impaired subjects in challenging en-
vironments are planned. Apart from evaluating the perfor-
mance, we hope to gain valuable insight into specific re-
quirements for subjects who have been coping with visual
dysfunction for a long period of time, that might not be ob-
vious from data collected on normal sighted subjects who
have had simulated vision loss for only a brief period.
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