Functional States of Homooligomers: Insights from the Evolution of Glycosyltransferases

Kosuke Hashimoto, Thomas Madej, Stephen H. Bryant, Anna R. Panchenko
2010 Journal of Molecular Biology  
Glycosylation is an important aspect of epigenetic regulation. Glycosyltransferase is a key enzyme in the biosynthesis of glycans, which glycosylates more than half of all proteins in eukaryotes and is involved in a wide range of biological processes. It has been suggested previously that homooligomerization in glycosyltransferases and other proteins might be crucial for their function. In this study, we explore functional homooligomeric states of glycosyltransferases in various organisms,
more » ... their evolution and perform comparative analyses to find structural features which can mediate or disrupt the formation of different homooligomers. First we make a structure-based classification of the diverse superfamily of glycosyltransferases and confirm that the majority of the structures are indeed clustered into the GT-A or GT-B folds. We find that homooligomeric glycosyltransferases appear to be as ancient as monomeric glycosyltransferases and go back in evolution to the last universal common ancestor (LUCA). Moreover, we show that interface residues have significant bias to be gapped out or unaligned in the monomers implying that they might represent features crucial for oligomer formation. Structural analysis of these features reveals that the vast majority of them represent loops, terminal regions and helices indicating that these secondary structure elements mediate the formation of glycosyltransferases' homooligomers and directly contribute to the specific binding. We also observe relatively short protein regions which disrupt the homodimer interactions although such cases are rare. These results suggest that relatively small structural changes in the non-conserved regions may contribute to the formation of different functional oligomeric states and might be important in regulation of enzyme activity through homooligomerization.
doi:10.1016/j.jmb.2010.03.059 pmid:20381499 pmcid:PMC2896236 fatcat:5tlom6zxwncf7ha5xqlmb5h7ki