Mitigating Amdahl's Law through EPI Throttling

Murali Annavaram, Ed Grochowski, John Shen
2005 SIGARCH Computer Architecture News  
This paper is motivated by three recent trends in computer design. First, chip multi-processors (CMPs) with increasing numbers of CPU cores per chip are becoming common. Second, multi-threaded software that can take advantage of CMPs will soon become prevalent. Due to the nature of the algorithms, these multi-threaded programs inherently will have phases of sequential execution; Amdahl's law dictates that the speedup of such parallel programs will be limited by the sequential portion of the
more » ... utation. Finally, increasing levels of on-chip integration coupled with a slowing rate of reduction in supply voltage make power consumption a first order design constraint. Given this environment, our goal is to minimize the execution times of multi-threaded programs containing nontrivial parallel and sequential phases, while keeping the CMP's total power consumption within a fixed budget. In order to mitigate the effects of Amdahl's law, in this paper we make a compelling case for varying the amount of energy expended to process instructions according to the amount of available parallelism. Using the equation, Power=Energy per instruction (EPI) * Instructions per second (IPS), we propose that during phases of limited parallelism (low IPS) the chip multi-processor will spend more EPI; similarly, during phases of higher parallelism (high IPS) the chip multi-processor will spend less EPI; in both scenarios power is fixed. We evaluate the performance benefits of an EPI throttle on an asymmetric multiprocessor (AMP) prototyped from a physical 4-way Xeon SMP server. Using a wide range of multi-threaded programs, we show a 38% wall clock speedup on an AMP compared to a standard SMP that uses the same power. We also measure the supply current on a 4-way SMP server while running the multithreaded programs and use the measured data as input to a software simulator that implements a more flexible EPI throttle. The results from the measurement-driven simulation show performance benefits comparable to the AMP prototype. We analyze the results from both techniques, explain why and when an EPI throttle works well, and conclude with a discussion of the challenges in building practical EPI throttles.
doi:10.1145/1080695.1069995 fatcat:xq5sy7gfajh3pe3sj7vetlfa3e