Video recommendation over multiple information sources

Xiaojian Zhao, Jin Yuan, Meng Wang, Guangda Li, Richang Hong, Zhoujun Li, Tat-Seng Chua
2012 Multimedia Systems  
Video recommendation is an important tool to help people access interesting videos. In this paper, we propose a universal scheme to integrate rich information for personalized video recommendation. Our approach regards video recommendation as a ranking task. First, it generates multiple ranking lists by exploring different information sources. In particular, one novel source user's relationship strength is inferred through the online social network and applied to recommend videos. Second, based
more » ... on multiple ranking lists, a multi-task rank aggregation approach is proposed to integrate these ranking lists to generate a final result for video recommendation. It is shown that our scheme is flexible that can easily incorporate other methods by adding their generated ranking lists into our multi-task rank aggregation approach. We conduct experiments on a large dataset with 76 users and more than 11,000 videos. The experimental results demonstrate the feasibility and effectiveness of our approach.
doi:10.1007/s00530-012-0267-z fatcat:vu2jxkwobjcshf3evbf4pxwxle