Log-convex and Stieltjes moment sequences [article]

Yi Wang, Bao-Xuan Zhu
2016 arXiv   pre-print
We show that Stieltjes moment sequences are infinitely log-convex, which parallels a famous result that (finite) Pólya frequency sequences are infinitely log-concave. We introduce the concept of q-Stieltjes moment sequences of polynomials and show that many well-known polynomials in combinatorics are such sequences. We provide a criterion for linear transformations and convolutions preserving Stieltjes moment sequences. Many well-known combinatorial sequences are shown to be Stieltjes moment
more » ... uences in a unified approach and therefore infinitely log-convex, which in particular settles a conjecture of Chen and Xia about the infinite log-convexity of the Schröder numbers. We also list some interesting problems and conjectures about the log-convexity and the Stieltjes moment property of the (generalized) Apéry numbers.
arXiv:1612.04114v1 fatcat:4kdv75hd6jhevo5grledspbdtq