A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2022; you can also visit the original URL.
The file type is application/pdf
.
Data Visualization, Dimensionality Reduction, and Data Alignment via Manifold Learning
2022
The high dimensionality of modern data introduces significant challenges in descriptive and exploratory data analysis. These challenges gave rise to extensive work on dimensionality reduction and manifold learning aiming to provide low dimensional representations that preserve or uncover intrinsic patterns and structures in the data. In this thesis, we expand the current literature in manifold learning developing two methods called DIG (Dynamical Information Geometry) and GRAE (Geometry
doi:10.26076/dd31-a40d
fatcat:iuoymhffn5bmlkzyg67p6y2wse