Automatic seizure detection based on imaged-EEG signals through fully convolutional networks

Catalina Gómez, Pablo Arbeláez, Miguel Navarrete, Catalina Alvarado-Rojas, Michel Le Van Quyen, Mario Valderrama
2020 Scientific Reports  
AbstractSeizure detection is a routine process in epilepsy units requiring manual intervention of well-trained specialists. This process could be extensive, inefficient and time-consuming, especially for long term recordings. We proposed an automatic method to detect epileptic seizures using an imaged-EEG representation of brain signals. To accomplish this, we analyzed EEG signals from two different datasets: the CHB-MIT Scalp EEG database and the EPILEPSIAE project that includes scalp and
more » ... cranial recordings. We used fully convolutional neural networks to automatically detect seizures. For our best model, we reached average accuracy and specificity values of 99.3% and 99.6%, respectively, for the CHB-MIT dataset, and corresponding values of 98.0% and 98.3% for the EPILEPSIAE patients. For these patients, the inclusion of intracranial electrodes together with scalp ones increased the average accuracy and specificity values to 99.6% and 58.3%, respectively. Regarding the other metrics, our best model reached average precision of 62.7%, recall of 58.3%, F-measure of 59.0% and AP of 54.5% on the CHB-MIT recordings, and comparatively lowers performances for the EPILEPSIAE dataset. For both databases, the number of false alarms per hour reached values less than 0.5/h for 92% of the CHB-MIT patients and less than 1.0/h for 80% of the EPILEPSIAE patients. Compared to recent studies, our lightweight approach does not need any estimation of pre-selected features and demonstrates high performances with promising possibilities for the introduction of such automatic methods in the clinical practice.
doi:10.1038/s41598-020-78784-3 pmid:33311533 fatcat:tgigm3ldybfs7k4akigcow6zge