A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2020; you can also visit the original URL.
The file type is application/pdf
.
Deep functional synthesis: a machine learning approach to gene functional enrichment
[article]
2019
bioRxiv
pre-print
Gene functional enrichment is a mainstay of genomics, but it relies on manually curated databases of gene functions that are incomplete and unaware of the biological context. Here we present an alternative machine learning approach, Deep Functional Synthesis (DeepSyn), which moves beyond gene function databases to dynamically infer the functions of a gene set from its associated network of literature and data, conditioned on the disease and drug context of the current experiment. Using a
doi:10.1101/824086
fatcat:yq2rx6qx2racbkv4fpvv3mavoe