Query-Number Preserving Reductions and Linear Lower Bounds for Testing

Yuichi YOSHIDA, Hiro ITO
2010 IEICE transactions on information and systems  
In this paper, we study lower bounds on the query complexity of testing algorithms for various problems. Given an oracle that returns information of an input object, a testing algorithm distinguishes the case that the object has a given property P from the case that it has a large distance to having P with probability at least 2 3 . The query complexity of an algorithm is measured by the number of accesses to the oracle. We introduce two reductions that preserve the query complexity. One is
more » ... ved from the gap-preserving local reduction and the other is from the L-reduction. By using the former reduction, we show linear lower bounds on the query complexity for testing basic NP-complete properties, i.e., 3edge-colorability, directed Hamiltonian path/cycle, undirected Hamiltonian path/cycle, 3-dimensional matching and NP-complete generalized satisfiability problems. Also, using the second reduction, we show a linear lower bound on the query complexity of approximating the size of the maximum 3-dimensional matching.
doi:10.1587/transinf.e93.d.233 fatcat:iixwxpiiqneaha362w34z23gfe