A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2020; you can also visit the original URL.
The file type is application/pdf
.
Exponential convergence of hp quadrature for integral operators with Gevrey kernels
[report]
2009
Galerkin discretizations of integral equations in R d require the evaluation of integrals I = R S (1) R S (2) g(x, y)dydx where S (1) , S (2) are d-simplices and g has a singularity at x = y. We assume that g is Gevrey smooth for x = y and satisfies bounds for the derivatives which allow algebraic singularities at x = y. This holds for kernel functions commonly occuring in integral equations. We construct a family of quadrature rules Q N using N function evaluations of g which achieves
doi:10.3929/ethz-a-010406066
fatcat:deqxolt7gffpnmy56hgu554coq