Priority Analysis of Remote Sensing and Geospatial Information Techniques to Water-Related Disaster Damage Reduction for Inter-Korean Cooperation

Sunmin Lee, Sung-Hwan Park, Moung-Jin Lee, Taejung Song
2020 Journal of Sensors  
The social and economic harm to North Korea caused by water-related disasters is increasing with the increase in the disasters worldwide. Despite the improvement of inter-Korean relations in recent years, the issue of water-related disasters, which can directly affect the lives of people, has not been discussed. With consideration of inter-Korean relations, a government-wide technical plan should be established to reduce the damage caused by water-related disasters. Therefore, the purpose of
more » ... s study was to identify remote sensing and GIS techniques that could be useful in reducing the damage caused by water-related disasters while considering inter-Korean relations and the disasters that occur in North Korea. To this end, based on the definitions of disasters in South and North Korea, water-related disasters that occurred during a 17-year period from 2001 to 2017 in North Korea were first summarized and reclassified into six types: typhoons, downpours, floods, landslides, heavy snowfalls, and droughts. In addition, remote sensing- and GIS-based techniques in South Korea that could be applied to water-related disasters in North Korea were investigated and reclassified according to applicability to the six disaster types. The results showed that remote sensing and other monitoring techniques using spatial information, GIS-based database construction, and integrated water-related disaster management have high priorities. Especially, the use of radar images, such as C band images, has proven essential. Moreover, case studies were analyzed within remote sensing- and GIS-based techniques that could be applicable to the water-related disasters that occur frequently in North Korea. Water disaster satellites with high-resolution C band synthetic aperture radar are scheduled to be launched by South Korea. These results provide basic data to support techniques and establish countermeasures to reduce the damage from water-related disasters in North Korea in the medium to long term.
doi:10.1155/2020/8878888 fatcat:ew6kqeiulzg7jfrvtkkuwgw3g4