Detrainment and braking of snow avalanches interacting with forests [post]

Louis Védrine, Xingyue Li, Johan Gaume
2021 unpublished
Abstract. Mountain forests provide natural protection against avalanches. They can both prevent avalanche formation in release zones and reduce avalanche mobility in runout areas. Although the braking effect of forests has been previously explored through global statistical analyses on documented avalanches, little is known about the mechanism of snow detrainment in forests for small and medium avalanches. In this study, we investigate the detrainment and braking of snow avalanches in forested
more » ... errain, by performing three-dimensional simulations using the Material Point Method (MPM) and a large strain elastoplastic snow constitutive model based on Critical State Soil Mechanics. First, the snow internal friction is evaluated using existing field measurements based on the detrainment mass, showing the feasibility of the numerical framework and offering a reference case for further exploration of different snow types. Then, we systematically investigate the influence of snow properties and forest parameters on avalanche characteristics. Our results suggest that, for both dry and wet avalanches, the detrainment mass decreases with the square of the avalanche front velocity before it reaches a plateau value. Furthermore, the detrainment mass significantly depends on snow properties. It can be as much as ten times larger for wet snow compared to dry snow. By examining the effect of forest configurations, it is found that forest density and tree diameter have cubic and square relations with the detrainment mass, respectively. The outcomes of this study may contribute to the development of improved formulations of avalanche–forest interaction models in popular operational simulation tools and thus improve hazard assessment for alpine geophysical mass flows in forested terrain.
doi:10.5194/nhess-2021-289 fatcat:gnwshnpfxvhv5obr2pdujmq36a