Complex Factoid Question Answering with a Free-Text Knowledge Graph
Chen Zhao, Chenyan Xiong, Xin Qian, Jordan Boyd-Graber
2020
Proceedings of The Web Conference 2020
We introduce DELFT, a factoid question answering system which combines the nuance and depth of knowledge graph question answering approaches with the broader coverage of free-text. DELFT builds a free-text knowledge graph from Wikipedia, with entities as nodes and sentences in which entities co-occur as edges. For each question, DELFT finds the subgraph linking question entity nodes to candidates using text sentences as edges, creating a dense and high coverage semantic graph. A novel graph
more »
... al network reasons over the free-text graph-combining evidence on the nodes via information along edge sentences-to select a final answer. Experiments on three question answering datasets show DELFT can answer entity-rich questions better than machine reading based models, bert-based answer ranking and memory networks. DELFT's advantage comes from both the high coverage of its free-text knowledge graph-more than double that of dbpedia relations-and the novel graph neural network which reasons on the rich but noisy free-text evidence.
doi:10.1145/3366423.3380197
dblp:conf/www/ZhaoXQB20
fatcat:ahvzga5qdjdfph36gpkuikn4oe