Seismic Retrofit of Concrete Columns by Transverse Prestressing

Amirreza Sabri, Université D'Ottawa / University Of Ottawa, Université D'Ottawa / University Of Ottawa
Performance of buildings and bridges during past earthquakes has indicated that many of these structures are vulnerable to seismic damage and structural collapse. The deficiencies in pre-1970s design codes have resulted in poor performance of reinforced concrete structures during seismic excitations. The Richter Magnitude 6.6 - 1971 San Fernando Earthquake raised awareness for seismic retrofit needs of existing buildings for the first time. The majority of deficiencies of vulnerable concrete
more » ... umns can be overcome through seismic retrofits that involve additional transverse reinforcement. This can be done either by providing reinforced concrete, steel, or fibre-reinforced polymer (FRP) jackets around existing columns; or by applying transverse prestressing to columns (RetroBelt System). The research project presented in this thesis involves a seismic retrofit methodology for seismically deficient building and bridge columns, utilizing the use of high-strength packaging straps as external reinforcement for transverse prestressing. The emphasis in the project is placed on experimental research. Three seismically deficient full-size reinforced concrete columns, with a circular, a square and a rectangular cross- section, either critical in shear or flexure, were designed, built and tested under simulated seismic loading. The results indicate that external prestressing of columns in transverse direction with high-strength steel straps improves ductility and energy dissipation capacity of seismically deficient columns. They further indicate that current analytical techniques can be used to predict the force-displacement relationships of columns. A design approach is presented for the retrofit methodology investigated.
doi:10.20381/ruor-3196 fatcat:ymhxlfqnc5di7mlu6u2i7so65q