A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2018; you can also visit the original URL.
The file type is application/pdf
.
Congruence relations of Ankeny-Artin-Chowla type for pure cubic fields
1984
Nagoya mathematical journal
Ankeny, Artin and Chowla [1] proved a congruence relation among the class number, the fundamental unit of real quadratic fields, and the Bernoulli numbers. Our aim of this paper is to prove similar congruence relations for pure cubic fields. For this purpose, we use the Hurwitz numbers associated with the elliptic curve defined by y2 = 4x3 — 1 instead of the Bernoulli numbers (§ 3).
doi:10.1017/s0027763000021164
fatcat:x5cberpv3jcb7dovhhadaiio4u