An integration of bottom-up and top-down salient cues on RGB-D data: saliency from objectness versus non-objectness

Nevrez Imamoglu, Wataru Shimoda, Chi Zhang, Yuming Fang, Asako Kanezaki, Keiji Yanai, Yoshifumi Nishida
2017 Signal, Image and Video Processing  
Bottom-up and top-down visual cues are two types of information that helps the visual saliency models. These salient cues can be from spatial distributions of the features (space-based saliency) or contextual / task-dependent features (object based saliency). Saliency models generally incorporate salient cues either in bottom-up or top-down norm separately. In this work, we combine bottom-up and top-down cues from both space and object based salient features on RGB-D data. In addition, we also
more » ... nvestigated the ability of various pre-trained convolutional neural networks for extracting top-down saliency on color images based on the object dependent feature activation. We demonstrate that combining salient features from color and dept through bottom-up and top-down methods gives significant improvement on the salient object detection with space based and object based salient cues. RGB-D saliency integration framework yields promising results compared with the several state-of-the-art-models.
doi:10.1007/s11760-017-1159-7 fatcat:b5nr2bj7bzbbzb7nmkdrmnseiq