Automatic Construction of Context-Aware Sentiment Lexicon in the Financial Domain Using Direction-Dependent Words [article]

Jihye Park, Hye Jin Lee, Sungzoon Cho
2021 arXiv   pre-print
Increasing attention has been drawn to the sentiment analysis of financial documents. The most popular examples of such documents include analyst reports and economic news, the analysis of which is frequently used to capture the trends in market sentiments. On the other hand, the significance of the role sentiment analysis plays in the financial domain has given rise to the efforts to construct a financial domain-specific sentiment lexicon. Sentiment lexicons lend a hand for solving various
more » ... mining tasks, such as unsupervised classification of text data, while alleviating the arduous human labor required for manual labeling. One of the challenges in the construction of an effective sentiment lexicon is that the semantic orientation of a word may change depending on the context in which it appears. For instance, the word "profit" usually conveys positive sentiments; however, when the word is juxtaposed with another word "decrease," the sentiment associated with the phrase "profit decreases" now becomes negative. Hence, the sentiment of a given word may shift as one begins to consider the context surrounding the word. In this paper, we address this issue by incorporating context when building sentiment lexicon from a given corpus. Specifically, we construct a lexicon named Senti-DD for the Sentiment lexicon composed of Direction-Dependent words, which expresses each term a pair of a directional word and a direction-dependent word. Experiment results show that higher classification performance is achieved with Senti-DD, proving the effectiveness of our method for automatically constructing a context-aware sentiment lexicon in the financial domain.
arXiv:2106.05723v1 fatcat:l7qwllgehfdsfiqbz6bgt753rm