A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2019; you can also visit the original URL.
The file type is application/pdf
.
Semiperfect FPF rings
1983
Proceedings of the American Mathematical Society
In this paper we derive some of the structure of semiperfect FPF rings. A ring is right FPF if every f.g. faithful right module is a generator. For semiperfect right and left FPF rings we show that if all one sided zero divisors are two sided zero divisors, then the classical and maximal quotient rings coincide (all four of them) and are self-injective. We show that if the intersection of the powers of the Jacobson radical is zero, then right and left regular elements are regular. Also, we show
doi:10.1090/s0002-9939-1983-0715852-5
fatcat:udp47iplsvavveuazicohpe2cm