A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2020; you can also visit the original URL.
The file type is application/pdf
.
A Wavelet Based Numerical Method for Nonlinear Partial Differential Equations
2003
This paper is concerned with the numerical treatment of quasilinear elliptic partial differential equations. In order to solve the given equation we propose to use a Galerkin approach, but, in contrast to conventional finite element discretizations, we work with trial spaces that, not only exhibit the usual approximation and good localization properties, but, in addition, lead to expansions of any element in the underlying Hilbert spaces in terms in multiscale or wavelet bases with certain
doi:10.25643/bauhaus-universitaet.363
fatcat:53zyk2yvirfxhbx5n6nwgrl3eu