A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2020; you can also visit <a rel="external noopener" href="http://www.jdl.ac.cn/doc/2010/Liu%20Xianming_ICIMCS2010.pdf">the original URL</a>. The file type is <code>application/pdf</code>.
Visual topic model for web image annotation
<span title="">2010</span>
<i title="ACM Press">
<a target="_blank" rel="noopener" href="https://fatcat.wiki/container/c3hdogiqszdadoxykcz3v6sgn4" style="color: black;">Proceedings of the Second International Conference on Internet Multimedia Computing and Service - ICIMCS '10</a>
</i>
In this paper, we focus on image semantic understanding under large scale of image set, in which traditional approaches suffer from the limitations of scalability, tag correlation and noisy items. To solve these problems, a novel Visual Topic Model framework is proposed, via unsupervised clustering techniques. The framework aims at analyzing image semantics fusing both content and context, by considering tag correlations and ambiguities. In fact, the tags highly correlated in context may vary
<span class="external-identifiers">
<a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1145/1937728.1937758">doi:10.1145/1937728.1937758</a>
<a target="_blank" rel="external noopener" href="https://dblp.org/rec/conf/icimcs/LiuYJXST10.html">dblp:conf/icimcs/LiuYJXST10</a>
<a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/deu7gz4xzndxppasmaxgzygt6y">fatcat:deu7gz4xzndxppasmaxgzygt6y</a>
</span>
more »
... eatly in visual content and thus represent different semantics. Furthermore, a keyword selection and image annotation algorithm is also developed and applied to Flickr database with 175,770 images. Compared with the state-of-the-art methods, credible performance provides solid support for our framework.
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20200321080610/http://www.jdl.ac.cn/doc/2010/Liu%20Xianming_ICIMCS2010.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext">
<button class="ui simple right pointing dropdown compact black labeled icon button serp-button">
<i class="icon ia-icon"></i>
Web Archive
[PDF]
</button>
</a>
<a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1145/1937728.1937758">
<button class="ui left aligned compact blue labeled icon button serp-button">
<i class="external alternate icon"></i>
acm.org
</button>
</a>