A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2019; you can also visit the original URL.
The file type is application/pdf
.
Bandwidth Selection in Nonparametric Regression with Large Sample Size
2018
Proceedings (MDPI)
In the context of nonparametric regression estimation, the behaviour of kernel methods such as the Nadaraya-Watson or local linear estimators is heavily influenced by the value of the bandwidth parameter, which determines the trade-off between bias and variance. This clearly implies that the selection of an optimal bandwidth, in the sense of minimizing some risk function (MSE, MISE, etc.), is a crucial issue. However, the task of estimating an optimal bandwidth using the whole sample can be
doi:10.3390/proceedings2181166
fatcat:etvsx5n6cjaf7i7xvs447e77pq